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Exercice 1 – Notation asymptotique (3 points) 

1) Comparaison des fonctions (2 pts) 

Le terme dominant de 𝑓(𝑛) est 𝑛3 et celui 𝑔(𝑛) est 𝑛2 log 𝑛. 

Comme 𝑛3 croît plus vite que 𝑛2 log 𝑛 , on a 

𝑓(𝑛) ∈ Θ(𝑛3), g(n) ∈ Θ(𝑛2 log 𝑛), et  

𝑓(𝑛) ∈ Ω(𝑔(𝑛)) et 𝑔(𝑛) ∈ O(𝑓(𝑛)) 

2) Affirmation vraie ou fausse (1 pt) 

𝑛 log 𝑛 ∈ 𝑂(𝑛1.5) 

   Vrai 

Justification : 

lim
𝑛→+∞

𝑛 log 𝑛

𝑛1.5
=  lim

𝑛→+∞

log 𝑛

√𝑛
= 0 

Donc 𝑛 log 𝑛 croît strictement moins vite que 𝑛1.5, d’où :  𝑛 log 𝑛 ∈ 𝑂(𝑛1.5). 

Exercice 2 – Calcul de 𝒙𝒏 : algorithmes et complexité (3 points) 

1) Complexité temporelle (1 pt) 

• Algorithme 1 (itératif) 

→ Une boucle de 𝑛 itérations 

𝑂(𝑛) 

• Algorithme 2 (récursif linéaire) 

→ Un appel récursif par décrément de 𝑛 

𝑂(𝑛) 

• Algorithme 3 (exponentiation rapide) 

→ Division du problème par 2 

𝑂(log 𝑛) 



2 
 

2) Équation de récurrence (1 pt) 

Pour l’algorithme 3 : 

𝑇(𝑛) = 𝑇 (
𝑛

2
) + 𝑂(1) 

avec condition initiale : 

𝑇(0) = 𝑂(1) 

3) Comparaison des algorithmes (1 pt) 

• Algorithmes 1 et 2 : complexité linéaire 𝑂(𝑛) 

• Algorithme 3 : complexité logarithmique 𝑂(log 𝑛) 

Conclusion : L’algorithme 3 est le plus efficace pour de grandes valeurs de 𝑛. 

Exercice 3 – Tri rapide (QuickSort) (6 points)  

Tableau initial : 𝐴 = [15, 9, 17, 3, 12, 27, 6, 20] 

Pivot = premier élément 

1) Application pas à pas (2 pts) 

Étape 1 

Pivot = 15 

Partition : 

• Gauche : [9,  3,  12,  6] 

• Droite : [17,  27,  20] 

Étape 2 (Sous-tableau gauche [9,  3,  12,  6]) 

Pivot = 9 

Partition : 

• Gauche : [3,  6] 

• Droite : [12] 

Étape 3 (Sous-tableau [3, 6]) 

Pivot = 3 

Partition : 

• Gauche : [] 

• Droite : [6] 

Étape 4 (Sous-tableau droit initial) 

Pivot = 17 

Partition : 

• Gauche : [] 
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• Droite : [27,  20] 

Étape 5 (Sous-tableau [27, 20]) 

Pivot = 27 

Partition : 

• Gauche : [20] 

• Droite : [] 

Résultat final : [3,   6,   9,   12,   15,   17,   20,   27] 

2) Pseudo-code de QuickSort (2 pts) 

QuickSort(A, low, high): 

    if low < high: 

        p ← Partition(A, low, high) 

        QuickSort(A, low, p - 1) 

        QuickSort(A, p + 1, high) 

3) Complexité temporelle (2 pts) 

• Meilleur cas (partition équilibrée) : 𝑂(𝑛 log 𝑛) 

• Pire cas (tableau déjà trié, pivot extrême) : 𝑂(𝑛2) 

Exercice 4 – Programmation dynamique : Alignement de chaînes (8 points)  

1) Sous-problème et principe (1 pt) 

On définit : 

𝑫𝑷[𝒊][𝒋] = coût minimal pour aligner 𝑿[𝟏. . 𝒊] et 𝒀[𝟏. . 𝒋] 

La programmation dynamique est adaptée car : 

• les sous-problèmes se recouvrent 

• le problème possède une structure optimale 

2) Relation de récurrence (2 pts) 

𝐷𝑃[𝑖][𝑗] = 𝑚𝑖𝑛 {

𝐷𝑃[𝑖 − 1][𝑗] +  𝑔𝑎𝑝 (Suppression)
𝐷𝑃[𝑖][𝑗 − 1] + 𝑔𝑎𝑝 (insertion)
𝐷𝑃[𝑖 − 1][𝑗 − 1] + 𝑐𝑜𝑠𝑡(𝑥𝑖 , 𝑦𝑗) (match/substitution)

 

Conditions initiales : 

𝐷𝑃[0][𝑗] = 𝑗 ⋅ 𝑔𝑎𝑝,   𝐷𝑃[𝑖][0] = 𝑖 ⋅ 𝑔𝑎𝑝 
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3) Diagramme de programmation dynamique (2 pts) 

i\j 0 G C A T G C U 

0 0 1 2 3 4 5 6 7 

G 1 0 1 2 3 4 5 6 

A 2 1 1 1 2 3 4 5 

T 3 2 2 2 1 2 3 4 

T 4 3 3 3 2 2 3 4 

A 5 4 4 3 3 3 3 4 

C 6 5 4 4 4 4 3 4 

A 7 6 5 4 5 5 4 4 

→ Coût minimal d’alignement : 

  𝐷𝑃[7][7] +  4   

4) Alignement optimal (1 pt) 

Par backtracking à partir de 𝐷𝑃[𝑚][𝑛], on obtient un alignement optimal possible, par exemple 

(4 substitution): 

G A T T A C A 

G C A T G C U 

5) Implémentation Top-Down avec mémoïsation (2 pts) 

Align(i, j): 

    if i = 0: return j 

    if j = 0: return i 

    if memo[i][j] existe: return memo[i][j] 

 

    cost ← 0 si X[i] = Y[j], sinon 1 

 

    memo[i][j] ← min( 

        Align(i-1, j-1) + cost, 

        Align(i-1, j) + 1, 

        Align(i, j-1) + 1 

    ) 

 

    return memo[i][j] 


