
University of Echahid Hamma Lakhdar Semester 3

Department of Computer Science – L2
Module Examination :Algorithms and Data Structures 3

Exam Correction (El-Oued, 19/01/2026)

Exercise 1 — Stack to Queue (08 points)

1 /* Transfer Stack S to Queue Q */

2 QueueNode* stackToQueue(StackNode *S) {

3 StackNode *T = NULL;

4 QueueNode *Q = NULL;

5 int x;

6

7 /* Reverse S into T */

8 while (! isEmptyStack(S)) {

9 S = pop(S, &x);

10 T = push(T, x);

11 }

12

13 /* Transfer T into Q */

14 while (! isEmptyStack(T)) {

15 T = pop(T, &x);

16 Q = enqueue(Q, x);

17 }

18

19 return Q;

20 }

Exercise 2 — Time and Space Complexity (04 points)

Time Complexity:
Let n be the length of the string. At each recursive call, a constant number of operations

is performed (comparison and swap). The function reduces the problem size by two characters
at each call.

The recurrence relation is:
T (n) = T (n− 2) +O(1)

Solving this recurrence gives:
T (n) = O(n)

Space Complexity:
The function does not use any additional data structures. However, due to recursion, each

function call occupies space on the call stack.
The maximum depth of recursion is n

2
, therefore the space complexity is:

O(n)

Conclusion:

1



University of Echahid Hamma Lakhdar Semester 3

• Time complexity: O(n)

• Space complexity: O(n)

Exercise 3 — Singly Circular Linked List (08 points)

1 /* Delete the last node of a singly circular linked list */

2 Node* deleteLast(Node *head) {

3 Node *p, *prev;

4

5 /* Empty list */

6 if (head == NULL)

7 return NULL;

8

9 /* List with only one node */

10 if (head ->next == head) {

11 free(head);

12 return NULL;

13 }

14

15 /* Find the last node and its predecessor */

16 p = head;

17 while (p->next != head) {

18 prev = p;

19 p = p->next;

20 }

21

22 /* Remove the last node */

23 prev ->next = head;

24 free(p);

25

26 return head;

27 }

2


