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Module Examination : General Topology

Exercice 1. (7pts)
1. Show that the space (Q,|.]) isnot Baire space.
2. Apply Baire’s theorem to show that ]0, 1[ is not cour table.

3. Let (X,0)bea Baire space, (F)nen @ sequence of closed subsets of X such that:

UFﬂ=X.

nelN

Show that open set Uyen E, is dense in X.

Hint: Wecan introduce subset B = X\ Upert ﬁ“ and subsets B, = B (" Ex:

Exercice 2.(7pts)
1 Leta,b € R witha < b, and let F < C'(a,b[) such that Gl : feFx €la, bl} is
pounded by M. Prove that F is equicontinuous. - 4 i

2. Let (X,d) be a compact metric space and let (fu)seis be a sequence of functions in
C(X,R). Suppose that:
(a) The sequence (fu) is equicontinuous on X.
niwise to a function foX— R.

(b) The sequence (f,) converges pot

Prove that (f,) converges uniformly to f on X.

Exercice 3.(6pts)

Using the usual topology, answer the following questions, with justification :
1. Let éf= [0,1]. Is the set [0,0.5[ open in A?

—

2.Let Ei{_[}}rti& :n €N} Isthe singletor@?open in B?
3. Let C = [0,2]. Is the set 11,2] open in C?
4. Letn € N.Is {n} open in IN?

Good Luck
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