
Page 1 of 6

University of El-Oued

Faculty of Exact Sciences 18/01/2026

Department of Computer Science Duration: 90 minutes

2nd Year Master's (IoT&CS) Module: Networks for IoT

--

Exam

--

Q1: Select the correct answer(s)? (4 points)

1. What is the primary difference between

Active and Passive RFID tags?

a) Active tags use lasers to communicate,

while passive tags use radio waves.

b) Active tags are battery-powered and can

initiate communication, while passive tags

lack an internal power source and rely on

the reader’s energy.

2. Which of the following are true about beacon-

enabled mode?

a) Superframe structure defines active and inactive

periods

b) Nodes sleep during inactive periods to save energy

c) Beacon-enabled mode is mandatory for all IEEE

802.15.4 networks

d) PAN coordinator transmits periodic beacons for

synchronization

3. What are the functions of the IoT gateway

in a network?

a) To manage communication between IoT

devices and external networks

b) Protocol translation

c) Controlling device power usage

d) handle raw sensor data from devices

4. In the context of IoT network protocols, which

is considered a lightweight protocol for

constrained devices?

a) IP

b) CoAP

5. An IoT Communication model can be

a) Device-to-Cloud (D2C)

b) Device-to-Device (D2D)

6. The IETF defines “Low-Power and Lossy

Networks (LLNs)” as networks with resource-

constrained nodes using communication

technologies that are

a) high-cost,

b) short-range,

c) low-data-rate

7. IoT devices can be

a) Controllers and actuators

b) Sensors

c) switches

d) gateways

8. In the RPL routing protocol, which algorithm is

used to control the timing and frequency of

control message transmissions?

a) Dijkstra's Algorithm

b) Trickle Timer Algorithm

Q2: Answer with True or False? (3 points)
1. Low Power Wide-Area Networks (LPWAN)

encompasses wireless technologies built for

large-scale IoT deployments, enabling long-

distance connections with minimal power use. T

2. Device-to-Device (D2D) is the IoT

Communication model that enabling direct

interaction between IoT devices T

3. In an IEEE 802.15.4 network, a Full Function

Device (FFD) is capable of acting as a

coordinator, a router, or an end device,

whereas a Reduced Function Device (RFD) is

limited to being an end device. T

4. Proximity detection systems are primarily

concerned with establishing a precise, long-

distance communication link between two

devices. F

Page 2 of 6

5. EPC code is used for addressing IoT devices

while IPv6 is used for identifying them in an

IoT network. F

6. IoT Networking focuses on how devices are

organized, connected, and the physical range

they cover. It establishes the infrastructure

that allows devices to exist on a shared

system. T

Q3: Answer the following questions? (8 points)

1) Compare MAC addresses and IPv6 addresses. Give an example of a MAC address.

| Feature | MAC Address | IPv6 Address |

| ---------- | -------------------- | --------------------------- |

| OSI layer | Data Link (Layer 2) | Network (Layer 3) |

| Length | 48 bits (or 64 bits) | 128 bits |

| Scope | Local network only | Global (Internet-wide) |

| Assignment | Manufacturer | ISP / Network administrator |

| Routable | No | Yes |

Example of a MAC address : 00:1A:2B:3C:4D:5E

1) Determine the Link-Local and Global IPv6 addresses (using the EUI-64 format) for the following

MAC address: 39:A7:94:07:CB:D0
To convert a MAC address to an IPv6 Interface ID (EUI-64), we follow a specific 3-step process.

MAC Address: 39:A7:94:07:CB:D0

Step 1: Split and Insert
Split the MAC address into two halves (3 bytes each) and insert the reserved 16-bit value FFFE in the middle.

 39:A7:94 + FF:FE + 07:CB:D0
 Result: 39A7:94FF:FE07:CBD0

Step 2: Flip the 7th Bit (Universal/Local Bit)
We must invert the 7th bit of the first byte (from the left) to indicate that this is a "Universally/Locally

Administered" address.

 First byte (Hex): 39

 Convert to Binary: 0011 1001

 Flip the 7th bit: Change 0 to 1.

 New Binary: 0011 1011

 New Hex Value: 3B

New Interface ID: 3BA7:94FF:FE07:CBD0

Step 3: Formulate the Addresses
1. Link-Local Address

The Link-Local prefix is always FE80::/10. We combine this prefix with the Interface ID calculated above.

 Answer: FE80::3BA7:94FF:FE07:CBD0

2. Global Unicast Address

A global address depends on the network prefix assigned by the router (e.g., provided by an ISP). Since no

prefix was given in your question, we use the standard documentation prefix (2001:DB8::/64) as an example.

Page 3 of 6

 Format: [Global Prefix] + [Interface ID]

 Example Answer: 2001:DB8::3BA7:94FF:FE07:CBD0

2) A sensor node wants to send 300 bytes of application data using UDP over IPv6 in a 6LoWPAN network.

1. Total size of the uncompressed UDP/IPv6 datagram

* Application data: 300 Byte

* UDP header: 8 Byte

* IPv6 header: 40 Byte

UDP payload+header = (300+8=308) Byte

IPv6 datagram = (308+40= 348 Byte)

2) After 6LoWPAN compression, header size is 27 bytes

 2a) Which 6LoWPAN header compression scheme is used?

Stateful 6LoWPAN header compression:IPHC (for IPv6) + NHC (for UDP).

2b) Total size of the compressed datagram

Payload: 300 B, Compressed headers: 27 B  [300 + 27 = 327 Byte]

3) Fragmentation with 118 Byte IEEE 802.15.4 MAC payload

6LoWPAN fragmentation headers:

* First fragment header (FRAG1): 4 Byte

* Subsequent fragment header (FRAGN): 5 Byte

 Offset unit is 8 bytes, so all non-final fragments should carry a multiple of 8 bytes of datagram data.

 Per-fragment datagram-data capacity

* First fragment data max: (118-4=114) → largest multiple of 8 is 112 Byte

* Next fragment data max: (118-5=113) → largest multiple of 8 is 112 Byte

So use 112 Byte datagram-data for each “full” fragment.

3a) Number of fragments for a 327-byte datagram

After 2 full fragments: (112+112=224)  Remaining: (327-224=103)

A third fragment can carry at most 112, so it fits  3 fragments

3b) Size of each fragment (datagram data bytes + frag header)

* **Fragment 1:data 112 B + FRAG1 4 B = 116 Byte

* **Fragment 2:data 112 B + FRAGN 5 B = 117 Byte

* **Fragment 3: data 103 B + FRAGN 5 B = 108 Byte

✅ All are ≤ 118 B MAC payload, and offsets are valid:

* Frag2 offset = (112/8=14)

* Frag3 offset = (224/8=28)

Q5: Use case (5 points)

Figure below shows an end-to-end IP network that combines a traditional IPv6 core with a

6LoWPAN access network.

1) For the IoT access network indicate:
a) The suitable technology (PHY and Link layers)?

 Physical (PHY) & MAC: IEEE 802.15.4.

Page 4 of 6

 Standard Details: This defines the LR-WPAN (Low-Rate Wireless Personal Area Network). It

operates typically in the 2.4 GHz ISM band using O-QPSK modulation.

 Device Roles: The Edge Router acts as the FFD (Full Function Device) and PAN Coordinator,

managing synchronization. The sensor (Device 2) acts as an RFD (Reduced Function Device) or a

leaf node.

 Adaptation Layer: 6LoWPAN.

 Why it's needed: It resolves the mismatch between the IPv6 MTU (1280 bytes) and the IEEE

802.15.4 frame size (127 bytes) via Fragmentation and Header Compression (IPHC).

b) The network topology and communication model.

Mesh or or a Star topology and Device-to- Device (D2D) or Device-to-Gateway (D2G): Sensor

sends data to the Edge Router

c) Calculate the 64-bit EUI-64 Interface Identifier (IID) for the device “2” considering 16-bit short

addresses and a 16-bit PAN ID (1)

According to RFC 4944 (6LoWPAN), when using 16-bit short addresses, the pseudo-48-bit address is created

by appending the PAN ID.

The formula for the Interface ID is: [PAN ID (16 bits)] : [00FF] : [FE00] : [Short Address (16 bits)]

 PAN ID: 1  0x0001

 Short Address (Device 2): 2  0x0002

 Middle constants: 00FF:FE00

Resulting IID: 0001:00FF:FE00:0002

2) Assign a global unicast IPv6 addresses to: remote server, IPv6 core and access networks?

Remote Server: The IPv6 address for the remote server can be

`2001:10::2105`.

IPv6 Core: The **IPv6 Core** network has the prefix `2001:10::/64`,

and an address could be `2001:10::/64` for the network interface.

Access Network: The 6LoWPAN Access Network has the address prefix

`2001:11::/64`. Devices in this network would have addresses such as:

 * Device 1: `2001:11::1`

 * Device 2: `2001:11::2`

 * Device 3: `2001:11::3`

 * etc.

3) Develop an NS3 script to simulate the access network.

Here is a simplified C++ script for NS-3 that simulates a basic 6LoWPAN access network (IEEE 802.15.4)

with 2 nodes (1 Server/Gateway node and 1 Client/Sensor node) sending UDP packets.

C++
#include "ns3/core-module.h"

#include "ns3/csma-module.h"

Page 5 of 6

#include "ns3/internet-module.h"

#include "ns3/sixlowpan-module.h"

#include "ns3/lr-wpan-module.h"

#include "ns3/applications-module.h"

#include "ns3/mobility-module.h"

using namespace ns3;

int main (int argc, char *argv[])

{

 // 1. Create Nodes

 // Node 0 = Gateway/Coordinator, Node 1 = Sensor Device

 NodeContainer nodes;

 nodes.Create (2);

 // 2. Install Mobility (Static positions)

 MobilityHelper mobility;

 mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");

 mobility.Install (nodes);

 // Set positions manually for visualization

 nodes.Get (0)->GetObject<MobilityModel> ()->SetPosition (Vector (0, 0, 0));

 nodes.Get (1)->GetObject<MobilityModel> ()->SetPosition (Vector (10, 0, 0));

 // 3. Configure IEEE 802.15.4 (PHY and MAC)

 LrWpanHelper lrWpan;

 NetDeviceContainer lowpanDevices = lrWpan.Install (nodes);

 // Associate devices to PAN (PAN ID 1) - Simplified manual association

 // Note: specific NS3 versions usually handle association automatically or via

bootstrapping

 // This step assumes the devices are ready to communicate on the same channel.

 // 4. Install 6LoWPAN Layer

 SixLowPanHelper sixlowpan;

 NetDeviceContainer sixDevices = sixlowpan.Install (lowpanDevices);

 // 5. Install Internet Stack (IPv6)

 InternetStackHelper stack;

 stack.Install (nodes);

 // 6. Assign IPv6 Addresses

 Ipv6AddressHelper ipv6;

 // Assigning prefix 2001:db8:2000::/64 (as defined in Q2)

 ipv6.SetBase (Ipv6Address ("2001:db8:2000::"), Ipv6Prefix (64));

 Ipv6InterfaceContainer interfaces = ipv6.Assign (sixDevices);

 // 7. Install Applications (UDP Echo)

 // -- SERVER APPLICATION (On Node 0 - Gateway) --

 uint16_t port = 9;

 UdpEchoServerHelper echoServer (port);

 ApplicationContainer serverApps = echoServer.Install (nodes.Get (0));

 serverApps.Start (Seconds (1.0));

 serverApps.Stop (Seconds (10.0));

 // -- CLIENT APPLICATION (On Node 1 - Sensor) --

 // Target is Node 0's IPv6 address

 UdpEchoClientHelper echoClient (interfaces.GetAddress (0, 1), port);

 echoClient.SetAttribute ("MaxPackets", UintegerValue (5));

 echoClient.SetAttribute ("Interval", TimeValue (Seconds (1.0)));

 echoClient.SetAttribute ("PacketSize", UintegerValue (50)); // Small payload

Page 6 of 6

 ApplicationContainer clientApps = echoClient.Install (nodes.Get (1));

 clientApps.Start (Seconds (2.0));

 clientApps.Stop (Seconds (10.0));

 // 8. Run Simulation

 Simulator::Run ();

 Simulator::Destroy ();

 return 0;

}

