

Exam N° : 01

No documentation allowed

Exercise 1: True/False Questions

For each statement, answer **True (T)** or **False (F)**. Correct the statement if it is false.

1. In propositional logic, every consistent formula is also a tautology.
2. In propositional logic, if $A \vDash B$ then $A \rightarrow \neg B$ is a tautology.
3. Using resolution with refutation to prove $\Gamma \vDash C$, we try to derive the empty clause from $\Gamma \cup \{C\}$ after conversion to clausal form.
4. Forward chaining is not a resolution method.
5. If a set of clauses is consistent, then the empty clause can be derived using resolution.
6. Skolemization is used to find the clausal form in propositional logic.

Exercise 2: Propositional Logic

Consider the following knowledge base Γ :

1. $P \Rightarrow (T \wedge R)$
2. $(S \vee T) \Rightarrow P$
3. $T \Leftrightarrow U$
4. S
5. $\neg U$

Question 2.1: Transform Γ into **Horn clause**.

Question 2.2: Proving U from Γ (only the horn clauses) using **backward chaining method**, Show the steps clearly.

Exercise 3: Predicate Logic

Let the following be given:

- $C(x)$: x is a student in computer science
- $L(x,y)$: x likes module y
- $R(x, y)$: x revises the exam y
- $P(x,y)$: x will pass the exam y
- a: Ahmed
- ml: mathematical logic

Consider F:

1. $\forall x(C(x) \Rightarrow \exists y L(x, y))$
2. $\exists y \forall x (L(x, y) \vee R(x, y) \Rightarrow P(x, y))$
3. $\forall x \forall y R(x, y)$
4. $\exists x C(x)$

Question 3.1: Translate each formula into natural language (text).

Question 3.2: Translate the statement C: "**Ahmed passed the exam of mathematical logic**" into first-order predicate logic.

Question 3.3: Convert F into clausal form, show each step.

Question 3.4: Using the **refutation method**, prove that: $F \models C$, Show the steps of resolution clearly.

Good Luck

Exam Solutions & Marking Scheme (/20 points)

Exercise 1 – True/False (3 points total)

1. **F** – A consistent formula is true in at least one interpretation, but not necessarily in all.
2. **F** – If $A \models B$ then $A \rightarrow B$ is tautology, not $A \rightarrow \neg B$.
3. **F** – We try to derive empty clause from $\Gamma \cup \{\neg C\}$, not $\Gamma \cup \{C\} \Gamma \cup \{C\}$.
4. **F** – Backward chaining is a resolution method.
5. **F** – If consistent, empty clause **cannot** be derived.
6. **F** – Skolemization is for first-order logic, not propositional.

Each: 1 point (0.25 for T/F + 0.25 for correction if wrong).

Total: 6 points.

Exercise 2 – Propositional Logic (4.5 points total)

Question 2.1: Transform Γ into Horn Clauses $8*0.25 = 2$ pts

1. **From $P \rightarrow (T \wedge R)$:**
 - o This splits into two implications: $P \rightarrow T$ and $P \rightarrow R$.
 - o **Horn Clauses:** $P \rightarrow T$ and $P \rightarrow R$.
2. **From $(S \vee T) \rightarrow P$:**
 - o This splits into two implications: $S \rightarrow P$ and $T \rightarrow P$.
 - o **Horn Clauses:** $S \rightarrow P$ and $T \rightarrow P$.
3. **From $T \leftrightarrow U$:**
 - o This yields two directions: $T \rightarrow U$ and $U \rightarrow T$.
 - o **Horn Clauses:** $T \rightarrow U$ and $U \rightarrow T$.
4. **From S:**
 - o **Horn Clause:** S.
5. **From $\neg U$:** Non horn clause

Final Set of Horn Clauses for Chaining: $7*0.25 = 1.75$ pts

- (R1) $P \rightarrow T$
- (R2) $P \rightarrow R$
- (R3) $S \rightarrow P$
- (R4) $T \rightarrow P$
- (R5) $T \rightarrow U$
- (R6) $U \rightarrow T$
- (F1) S (Fact)

Question 2.2: Proving U using Backward Chaining 0.25*3 = .075 pts

Backward chaining starts from the **Goal (U)** and works backward to find facts that support it.

U, R5----T ?

T, R1----P ?

P, R3----S true

Exercise 3 – Predicate Logic (12.5 points total)

3.1 – Translation (0.5 *4 = 2 points)

1. Every computer science student likes some module.
2. There is a module such that for all xx, if xx likes it or revises it, then xx passes it.
3. Everyone revises every exam.
4. There is a computer science student.

Grading: 0.5 point each.

3.2 – The conclusion (0.5 point)

C : P(a,ml)

3.3 – Clause form (0.5 +0.5 +0.5) *6 = 9 points)

1. $\neg C(x) \vee L(x,a)$
2. $\neg L(x,a) \vee P(x,a)$
3. $\neg R(x,a) \vee P(x,a)$
4. $R(x,y)$
5. $C(a)$

Given F and goal C: P(a,ml)

Add negation: $\neg P(a,ml)$.

$$CF = \{ \neg C(x) \vee L(x,f(x)) , \neg L(x,a) \vee P(x,a) , \neg R(x,b) \vee P(x,b) , R(x,y) , C(c) , \neg P(a,ml) \}$$

3.4 – Refutation (1.5 points)

1. $\{ \neg C(x) \vee L(x,a) , \neg L(x,a) \vee P(x,a) \} \cdots \neg C(a) , P(x,a) \quad x=a.$
2. $C(a) , \neg C(a) , P(x,a) \cdots P(x,a).$
3. $P(x,a) , \neg P(a,ml) \cdots \perp$