

Full Name : Group :

Exercise 1: (8pts)

Let a and b (to be)..... arbitrary positive integers. In general, it is not possible to divide b by a exactly; instead, the division usually (to produce)..... a remainder. More precisely, when dividing b by a , we (to seek)..... a multiple of a that is as close as possible to b without exceeding it. For example, the integer 7 lies between the two consecutive multiples of 3,

$$2 \times 3 = 6 < 7 < 3 \times 3 = 9,$$

and we can therefore (to write)..... $7 = 2 \times 3 + 1$. In general, given any positive integers a and b , there (to exist)..... a unique integer q , called the quotient, such that qa is the largest multiple of a that is less than or equal to b . The difference between b and this multiple (to be) denoted by r , and we obtain the decomposition $b = qa + r$, where the remainder r satisfies $r = 0, 1, \dots, a - 1$.

- 1) Put the verbs between brackets in the correct form.
- 2) Find in the text synonyms (word with the same meaning) of the following words:
greatest=....., instance=....., habitually=.....
precisely=....., becoming bigger than=, represented=.....
- 3) How do we call the integer that has the uniqueness property in Euclidean division?
.....
- 4) How do we call the other integer that does not exceed the divisor?
.....

Exercise 2: (6pts) Write the following expressions in English words:

$\sqrt{x^5} = y^2 - 8$

$\nexists x \in \mathbb{R}, x^3 = 3^x$

.....

$\bar{z} - z \in \mathbb{R}$

.....

$f'(x) = x^2$

.....

Exercise 3: (6pts) Write the following sentences using mathematical symbols

- All real numbers x satisfy that x squared is greater than or equal to zero.
-

- The limit of sine x over x as x tends to zero is equal to one.
-

- The integral from zero to one of x cubed with respect to x equals one quarter.
-

The modulus of the complex number z is equal to one

.....

Good luck!

.....Solution.....

Exercise 1: (9pts)

Let a and b (to be)...are..... arbitrary positive integers. In general, it is not possible to divide b by a exactly; instead, the division usually (to produce)...produces.. a remainder. More precisely, when dividing b by a , we (to seek) seek. a multiple of a that is as close as possible to b without exceeding it. For example, the integer 7 lies between the two consecutive multiples of 3,

$$2 \times 3 = 6 < 7 < 3 \times 3 = 9,$$

and we can therefore (to write).. write... $7 = 2 \times 3 + 1$. In general, given any positive integers a and b , there (to exist)...exists... a unique integer q , called the quotient, such that qa is the largest multiple of a that is less than or equal to b . The difference between b and this multiple (to be) ...is... denoted by r , and we obtain the decomposition $b = qa + r$, where the remainder r satisfies $r = 0, 1, \dots, a - 1$.

- 5) Put the verbs between brackets in the correct form.
- 6) Find in the text synonyms (word with the same meaning) of the following words:
greatest=...**Largest**...., instance=.....**example**....., habitually=.....**usually**....
precisely=...**exactly**....., becoming bigger than= ...**exceeding**., represented=...**denoted**...
- 7) How do we call the integer that has the uniqueness property in Euclidean division?
.....**We call that integer “the quotient”**
- 8) How do we call the other integer that does not exceed the divisor?
.....**We call that integer “the remainder”**

Exercise 2: (6pts) Translate to English.

$\sqrt{x^5} = y^2 - 8$ **The square root of x to the fifth power is equal to y squared minus eight.**

$\nexists x \in \mathbb{R}, x^3 = 3^x$ There does not exist any real number x such that x cubed is equal to three to the power x .

$\bar{z} - z \in \mathbb{R}$ The complex conjugate of z minus z is a real number.

$f'(x) = x^2$ The derivative of the function f at x is equal to x squared.

Exercise 3: (6pts) Write the following sentences using mathematical symbols

Write the following sentences using mathematical symbols

- All real numbers x satisfy that x squared is greater than or equal to zero.

$$\forall x \in \mathbb{R}, x^2 \geq 0$$

- The limit of sine x over x as x tends to zero is equal to one.

$$\lim_{x \rightarrow 0} \frac{\sin x}{x} = 1$$

- The integral from zero to one of x cubed with respect to x equals one quarter.

$$\int_0^1 x^3 dx = \frac{1}{4}$$

- The modulus of the complex number z is equal to one

$$|z| = 1$$