Université Eshahid Hamma Lakhdar EI-Oued Module : Systéme Exploitation Il
Faculté des sciences exactes Niveau : 3¥™ Année Informatique
Département d'Informatique Le 22/01/2026 — Durée : 1h30

(Contrdle Semestriel J

Exercice 1

On a trois processus : P1, P2, P3 et trois types de ressources :
« R1:1exemplaire
« R2:2exemplaires
« R3:1exemplaire

A un instant t, 1’état du systéme est le suivant :
. P1 détient (possede) R1 et demande R2
« P2 détient R2 et demande R3
. P3détient R3 et demande R1

Questions :

1. Le graphe contient-il un cycle ? Le préciser.

2. Peut-on conclure qu’il y a un interblocage ?

3. Donner une séquence d’exécution possible qui évite I’interblocage (si possible).
4. Donner une modification (politique ou ordre) qui empéche ce type d’interblocage.

Exercice 2

On a trois processus P1, P2, P3.
Chaque processus exécute des actions dans cet ordre local :

e« P1:A1;:A2;A3
« P2:B1:B2:B3
e« P3:C1:C2:C3

On impose les équations (contraintes de précédence) suivantes :
Al < B2 (B2 ne peut commencer qu’apres Al)

Bl1<C2

Cl< A2

A2 <B3

B2 <C3

C2< A3

ok wdE

Travail demandeé :

Modéliser ces contraintes a l'aide de semaphores et écrire le pseudo-code complet des trois
processus.

Exercice 3

Un pont ne permet de faire passer qu’une voiture a la fois et fonctionne ainsi :
o Les voitures arrivent des deux cotés : Coté A et Coté B.

« On autorise un flux alterné :
o 3 voitures maximum du cbté A, puis 3 du cote B, etc.
o Une seule voiture peut étre sur le pont a un instant donné.

1. Modéliser chaque voiture comme un processus.
2. Proposer des sémaphores pour :

o garantir I’exclusion sur le pont

o garantir I’alternance A/B

s ililEie (g das 0 (Bia s 23 g
Adal .
B4l .
Aia) Aaad (gf 8 Jadh 5aa 53 5o W) 5 e Y 48 ¢) Gl 1 ki
AUl ae) g8ll 38y 5 el AS ja anlaii g g« By A (i) (e (Al e ISyl) &l jlud) Jaas

(Jalie slual) gl (puit 3 pusal) e Baa) 53 b (e ST 25a 5 S5m Y]
elad (5 e it dy 0 48y sy 5 5al) 3y 2
¢ Adgall (e 2l call 2aS Gl EDB G
¢ Bigall (e 4liie il aaS Ol Hlus SO i a3
(S Sy 1388 5 ¢ Adgall) sl o o
DU 53 s el (A) aiul) (AN Agall (S pigal) (saa) 8 ke < jlew s (I A11Y) 3
s

;o st

Alitas (Processus) dalae il Ll e 5w IS Jiiad 5l dadai]
(s e 33U el 3ally oLl (Semaphores) <l sias) (s de sana #1581 2

B0 S (A peal) e hadisaa) 53w e) Gl e
bl 2a€)l EO e Cile geaas B s A Otiead) G sl laca e

Corrigé-Type

Exercice 1 (07.00 Pts)

Dessin du graphe (Graphe d’allocation de ressources) (02.00 pts)

P1 P2 P3

R1 R2 R3
1) Cycle ? (01.00 pt)
Oui. Le cycle est :
P1->R2->P2->R3->P3->R1->P1
2) Cycle = Interblocage ? (01.00 pt)
Pas toujours.
* Si toutes les ressources du cycle ont une seule exemplaire, cycle = Interblocage certain

* Ici, R2 a 2 exemplaires : une occupée et autre libre.

(7 Donc : cycle présent mais interblocage pas certain (pas obligatoire), car une autre instance
de 'R2" peut casser I’attente.

3) Séquence qui évite I’interblocage (2.00 pts)
Comme une de "R2" est libre, on peut allouer I’autre a 'P1" :

1. Allouer “instance de R2 libre a '"P1° — "P1" posséde 'R1 + une de R2’

2. 'P1" termine sa section critique et libére "R1" et une de 'R2°

3. Maintenant "P3" peut obtenir "R1" (il le demandait), donc il progresse et libére "R3"

4. P2 obtient "R3", progresse, puis libére I’autre instance de de 'R2°

—Tous les processus sont exécutés et toutes les ressources sont libérées, pas d’interblocage.

—>La séquence est : P1->P3->P2

4) Une modification pour empécher ce scénario (prévention) (01.00 pt)

Deux options classiques (tu peux donner I’une des deux) :

Option A — Ordre global sur les ressources (prévention)

Imposer un ordre unique : 'R1<R2 <R3’

Tout processus doit demander les ressources dans cet ordre.

Exemple : "P3" ne doit pas demander "R1" aprés "R3" si ¢a viole ['ordre.
Option B — “Tout ou rien” (éviter la condition de détention et d’attente)
Un processus ne garde pas une ressource s’il n’obtient pas I’autre :

*si P2 a 'R2" mais n’a pas 'R3", il libeére 'R2" et réessaie plus tard.

Exercice 2 (05.50 pts)

Idée
Chaque contrainte X <Y se traduit par un sémaphore SXY initialisé a 0 :

« Celui qui execute X fait V(SXY) a la fin de X.
« Celui qui exécute Y fait P(SXY) juste avant Y.

1) Deéclaration (01.00 pt)
S Al B2,S B1.C2,S C1 A2,S A2 B3,S B2 _C3,S _C2 A3: Semaphore (=0);

2) Pseudo-code

Processus P1 (01.50 pts)
{

Al;

V(S_Al B2);

P(S_C1_A2);

A2;

V(S_A2_B3);

P(S_C2_A3);

A3;
}
Processus P2 (01.50 pts)
{

B1;

V(S_B1_C2);

P(S_Al B2);
B2:
V(S_B2 C3);

P(S_A2 _B3);
B3;

Processus P3 (01.50 pts)
{

C1l;
V(S_C1 _A2);

P(S_B1 _C2);
C2;
V(S_C2_A3);

P(S_B2 _C3);
C3;

Exercice 3 (07.50 Pts)

Déclaration des Sémaphores / variables (01.50 pts)

pont : Semaphore (= 1) // Semaphore contr6le le pont

mutex = 1; // protége les variables partagées. attA/ attB /cpt

goA : Semaphore(= 0) ; //bloquer une voiture du coté A tant qu’elle n’a pas le droit de passer,
goB : Semaphore (= 0) ;//bloquer une voiture du c6té B tant qu’elle n’a pas le droit de passer,
attA : entier (=0) ; //nombres voitures en attente coté A

attB : entier (=0) ; //nombres voitures en attente c6té B

tour ='A' (ou 'B") // détermine le réle A ou B

cpt =0 ; // nombre de voitures déja passees dans le lot courant (max 3)

Processus Voiture coté A () (103.00 pts)
{
P(mutex) ;
attA++;
while (tour !'="A") or (cpt == 3 and attB > 0){
V(mutex);
P(goA);
}
P(mutex);
attA-- ;
cpt++ ;
V(mutex) ;

P(pont) ;
< traverser() le pont>
V(pont) ;

P(mutex) ;
if (cpt == 3 and attB > 0) or (attA == 0 and attB > 0)
{ tour ='B"; cpt = 0; V(goB) ;}
else
{V(goA) ;}
V(mutex) ;
}

Processus Voiture coté B ()
{
P(mutex)
attB++;
while (tour !'="B') or (cpt == 3 and attA > 0)
{ V(mutex);
P(goB);
}
P(mutex);
attB-- ;
cpt++ ;
V(mutex) ;

P(pont) ;
< traverser() le pont>
V(pont) ;

P(mutex) ;
if (cpt == 3 and attA > 0) or (attB == 0 and attA > 0)
{ tour ='A’; cpt = 0; V(goA) ; }
else
{ V(goB); }
V(mutex);
}

(03.00 pts)

