

1

Université Eshahid Hamma Lakhdar El-Oued
Faculté des sciences exactes
Département d'Informatique

Module : Système Exploitation II
Niveau : 3ème Année Informatique
Le 22/01/2026 – Durée : 1h30

Exercice 1

On a trois processus : P1, P2, P3 et trois types de ressources :

 R1 : 1 exemplaire

 R2 : 2 exemplaires

 R3 : 1 exemplaire

À un instant t, l’état du système est le suivant :

 P1 détient (possède) R1 et demande R2

 P2 détient R2 et demande R3

 P3 détient R3 et demande R1

Questions :

1. Le graphe contient-il un cycle ? Le préciser.

2. Peut-on conclure qu’il y a un interblocage ?

3. Donner une séquence d’exécution possible qui évite l’interblocage (si possible).

4. Donner une modification (politique ou ordre) qui empêche ce type d’interblocage.

Exercice 2

On a trois processus P1, P2, P3.

Chaque processus exécute des actions dans cet ordre local :

 P1 : A1 ; A2 ; A3

 P2 : B1 ; B2 ; B3

 P3 : C1 ; C2 ; C3

On impose les équations (contraintes de précédence) suivantes :

1. A1 < B2 (B2 ne peut commencer qu’après A1)

2. B1 < C2

3. C1 < A2

4. A2 < B3

5. B2 < C3

6. C2 < A3

Travail demandé :

Modéliser ces contraintes à l'aide de sémaphores et écrire le pseudo-code complet des trois

processus.

Contrôle Semestriel

2

Exercice 3

Un pont ne permet de faire passer qu’une voiture à la fois et fonctionne ainsi :

 Les voitures arrivent des deux côtés : Côté A et Côté B.

 On autorise un flux alterné :

o 3 voitures maximum du côté A, puis 3 du côté B, etc.

o Une seule voiture peut être sur le pont à un instant donné.

1. Modéliser chaque voiture comme un processus.

2. Proposer des sémaphores pour :

o garantir l’exclusion sur le pont

o garantir l’alternance A/B

 :يوجد جسر ضيقّ يربط بين جهتين متقابلتين تسُمّى

 الجهة A

 الجهة B

 .إلا سيارة واحدة فقط في أي لحظة زمنيةنظراً لضيق الجسر، فإنه لا يسمح بمرور

 :، ويجب تنظيم حركة المرور وفق القواعد التاليةB و A تصل السيارات إلى الجسر بشكل عشوائي من الجهتين

 .لا يجوز وجود أكثر من سيارة واحدة على الجسر في نفس الوقت)إقصاء متبادل(.1

 :على شكل دفعات تناوبية منظّمةطريقة يتم المرور ب .2

o ثلاث سيارات كحد أقصى متتالية من الجهةتمر A،

o ثلاث سيارات كحد أقصى متتالية من الجهةثم تمر B،

o ثم يعود الدور إلى الجهة Aوهكذا بشكل دوري ،.

المرور دون انتظار إذا لم تكن هناك سيارات منتظرة في إحدى الجهتين، يمكن للجهة الأخرى الاستمرار في .3

 .الدور

 المطلوب :

 .مستقلة (Processus) ةة معالجعمليكل سيارة على أنها أو تمثيل نمذجة .1

 :اللازمة من أجل للقيام بالمزامنة (Semaphores) السيمفوراتاقتراح مجموعة من .2

 ضمان أن تمر سيارة واحدة فقط على الجسر في كل مرة.

 ضمان التناوب بين الجهتين A و B بمجموعات من ثلاث سيارات كحد أقصى.

3

Type-Corrigé

Exercice 1 (07.00 Pts)

Dessin du graphe (Graphe d’allocation de ressources) (02.00 pts)

R1 R2 R3

1) Cycle ? (01.00 pt)

Oui. Le cycle est :

P1 -> R2 -> P2 -> R3 -> P3 -> R1 -> P1`

2) Cycle = Interblocage ? (01.00 pt)

Pas toujours.

* Si toutes les ressources du cycle ont une seule exemplaire, cycle ⇒ Interblocage certain

* Ici, R2 a 2 exemplaires : une occupée et autre libre.

👉 Donc : cycle présent mais interblocage pas certain (pas obligatoire), car une autre instance

de `R2` peut casser l’attente.

3) Séquence qui évite l’interblocage (2.00 pts)

Comme une de `R2` est libre, on peut allouer l’autre à `P1` :

1. Allouer `instance de R2 libre à `P1` → `P1` possède `R1 + une de R2`

2. `P1` termine sa section critique et libère `R1` et une de `R2`

3. Maintenant `P3` peut obtenir `R1` (il le demandait), donc il progresse et libère `R3`

4. `P2` obtient `R3`, progresse, puis libère l’autre instance de de `R2`

 ➡Tous les processus sont exécutés et toutes les ressources sont libérées, pas d’interblocage.

La séquence est : P1->P3->P2

P1

1

P2

1

P3

1

4

4) Une modification pour empêcher ce scénario (prévention) (01.00 pt)

Deux options classiques (tu peux donner l’une des deux) :

Option A — Ordre global sur les ressources (prévention)

Imposer un ordre unique : `R1 < R2 < R3`

Tout processus doit demander les ressources dans cet ordre.

Exemple : `P3` ne doit pas demander `R1` après `R3` si ça viole l’ordre.

Option B — “Tout ou rien” (éviter la condition de détention et d’attente)

Un processus ne garde pas une ressource s’il n’obtient pas l’autre :

* si `P2` a `R2` mais n’a pas `R3`, il libère `R2` et réessaie plus tard.

Exercice 2 (05.50 pts)

Idée

Chaque contrainte X < Y se traduit par un sémaphore SXY initialisé à 0 :

 Celui qui exécute X fait V(SXY) à la fin de X.

 Celui qui exécute Y fait P(SXY) juste avant Y.

1) Déclaration (01.00 pt)

S_A1_B2, S_B1_C2, S_C1_A2, S_A2_B3, S_B2_C3, S_C2_A3 : Semaphore (=0);

2) Pseudo-code

Processus P1 (01.50 pts)

{

A1;

V(S_A1_B2);

P(S_C1_A2);

A2;

V(S_A2_B3);

P(S_C2_A3);

A3;

}

Processus P2 (01.50 pts)

{

B1;

5

V(S_B1_C2);

P(S_A1_B2);

B2;

V(S_B2_C3);

P(S_A2_B3);

B3;

}

Processus P3 (01.50 pts)

{

C1;

V(S_C1_A2);

P(S_B1_C2);

C2;

V(S_C2_A3);

P(S_B2_C3);

C3;

}

Exercice 3 (07.50 Pts)

Déclaration des Sémaphores / variables (01.50 pts)

pont : Semaphore (= 1) // Semaphore contrôle le pont

mutex = 1 ; // protège les variables partagées. attA/ attB /cpt

goA : Semaphore(= 0) ; //bloquer une voiture du côté A tant qu’elle n’a pas le droit de passer,

goB : Semaphore (= 0) ;//bloquer une voiture du côté B tant qu’elle n’a pas le droit de passer,

attA : entier (=0) ; //nombres voitures en attente côté A

attB : entier (=0) ; //nombres voitures en attente côté B

tour = 'A' (ou 'B') // détermine le rôle A ou B

cpt = 0 ; // nombre de voitures déjà passées dans le lot courant (max 3)

Processus Voiture côté A () (03.00 pts)
{

P(mutex) ;

 attA++;

 while (tour != 'A') or (cpt == 3 and attB > 0){

 V(mutex);

 P(goA);

 }

 P(mutex);

 attA-- ;

 cpt++ ;

 V(mutex) ;

6

P(pont) ;

 < traverser() le pont>

V(pont) ;

P(mutex) ;

 if (cpt == 3 and attB > 0) or (attA == 0 and attB > 0)

 { tour = 'B'; cpt = 0; V(goB) ;}

 else

 {V(goA) ;}

V(mutex) ;

}

Processus Voiture côté B () (03.00 pts)
{

P(mutex)

 attB++;

 while (tour != 'B') or (cpt == 3 and attA > 0)

 { V(mutex);

 P(goB);

 }

 P(mutex);

 attB-- ;

 cpt++ ;

V(mutex) ;

P(pont) ;

 < traverser() le pont>

V(pont) ;

P(mutex) ;

 if (cpt == 3 and attA > 0) or (attB == 0 and attA > 0)

 { tour = 'A'; cpt = 0; V(goA) ; }

 else

 { V(goB); }

V(mutex);

}

