

Data Visualization Exam - Solutions

Questions

1. **Primary purpose of a box plot in EDA:** A box plot (or box-and-whisker plot) is used to visually display the distribution of a dataset, showing key statistics like median, quartiles, and potential outliers. It helps in understanding the data's central tendency, spread, and skewness, and in identifying outliers.
2. **Most suitable chart for two quantitative variables:** A scatter plot is most suitable for showing the relationship between two quantitative variables (e.g., temperature vs. daily sales), as it plots individual data points to reveal correlations, trends, or clusters.
3. **Fundamental design requirement for bar chart value axis:** The value axis (usually the y-axis) **must start at zero** to avoid misrepresenting the proportional differences between categories.
4. **Phase to address duplicate records:** Duplicate records should be addressed during the **data cleaning/preprocessing phase**, before any analysis or modeling.
5. **Role of a 'Fact' table in dimensional data modeling:** A Fact table stores quantitative **measures (metrics)** of business processes (e.g., sales amount) and contains foreign keys linking to dimension tables, enabling analysis across dimensions.
6. **OLAP operation to view data for a single year:** The operation is **SLICE**—it selects a subset of the cube by fixing one dimension (e.g., Year = 2024).

Exercice: SoufConnect 5G Optimization

Part1: Descriptive Statistics & Boxplot

Dataset: 22, 25, 25, 28, 30, 32, 33, 35, 35, 36, 38, 40, 42, 45, 48, 50, 55, 62, 85, 110

1. Descriptive Statistics

- **Mean:** 46.8 ms
- **Median:** $(36+38)/2 = 37$ ms
- **Mode:** 25 ms and 35 ms
- **Population Variance:** 445.96
- **Standard Deviation:** 21.12 ms

2. Minimum, Maximum, Range, Quartiles

- **Minimum:** 22 ms
- **Maximum:** 110 ms
- **Range:** $110 - 22 = 88$ ms
- **First Quartile (Q1):** Median of first 10 values $= (30 + 32)/2 = 31$ ms
- **Third Quartile (Q3):** Median of last 10 values $= (48 + 50)/2 = 49$ ms

3. Interquartile Range (IQR) & Outliers

- **IQR:** $Q3 - Q1 = 49 - 31 = 18$ ms
- **Lower fence:** $Q1 - 1.5 \times IQR = 31 - 27 = 4$ ms
- **Upper fence:** $Q3 + 1.5 \times IQR = 49 + 27 = 76$ ms
- **Outliers:** Values below 4 ms (none) or above 76 ms \rightarrow **85 ms and 110 ms** are outliers.

4. Boxplot & Shape

- **Boxplot components:**
 - Lower whisker: 22 ms (smallest non-outlier)
 - Q1: 31 ms, Median: 37 ms, Q3: 49 ms
 - Upper whisker: 62 ms (largest non-outlier)
 - Outliers: 85 ms and 110 ms plotted as individual points.
- **Shape:** The distribution is **right-skewed** (positive skew) because:
 - Median (37) is closer to Q1 (31) than to Q3 (49).
 - Right whisker is longer, and outliers are on the high end.

Part2: Histograms & Visualization Principles

1. Histograms

Histogram A (Bin width = 10 ms):

Bin (ms)	Frequency
20–29	4
30–39	7
40–49	4
50–59	2
60–69	1
70–79	0
80–89	1
90–99	0
100–109	0
110–119	1

Histogram B (Bin width = 50 ms):

Bin (ms)	Frequency
0–49	15
50–99	4
100–149	1

2. Misleading Histogram

- **Histogram B** is misleading for identifying network instability because its wide bin width (50 ms) obscures important details like the distribution shape, gaps, and outliers.

3. Violation of Visualization Principles

- Histogram B violates the principle of **appropriate bin selection**: bins that are too wide can hide variability, clusters, and outliers, leading to oversimplification.

4. Potential Misleading Impact

- Decision-makers might perceive network performance as acceptable (most data in 0–49 ms bin) and miss the high-latency issues (outliers at 85 ms and 110 ms). This could lead to underestimating network instability, delaying infrastructure improvements, and affecting customer satisfaction.

Part3: Data Warehousing & OLAP

1. Star Schema

2. OLAP Operations

1. Total DataVolumeMB per Region in January 2026:

- **SLICE** on Time (Month=“January”, Year=2026)
- **ROLL-UP** on Subscriber dimension (from individual to Region level)

2. Total CostAmount for “Apple” devices with 5G during “Night” shift in 2025:
 - **DICE** (multiple conditions: Brand=“Apple”, 5GEnabled=“Yes”, Shift=“Night”, Year=2025)
3. Moving from yearly to monthly to daily view of PlanType usage:
 - **DRILL-DOWN** on Time dimension (Year → Month → Day)
4. Average DurationSeconds for Year 2025:
 - **SLICE** on Time (Year=2025) and aggregate (average) over the slice.