Correction of Final Exam of Advanced Databases

Exercise 01 (6 marks=1.5+1.5+1+1+1)
What is the estimated cost of I/O accesses required in the following situations?

1. Select * from S Order By id; (order by uses the sorting algorithm) the table is stored on [S] pages with a buffer of size B pages such as B>=[S].

The cost of this query tends to be the cost of sorting the table.
While the buffer can read all pages of S at a time ($B>=[S]$) and the sorting will be done in memory, the cost is [S]
2. Select * from S natural join R; the tables are stored on [S] and [R] pages respectively. The used join algorithm is block nested loop with a buffer of size B pages such as $B>[S]+2$

We can read all pages of [S] into the buffer and then read the pages of $[R]$ one by one. Therefore, the cost is $[S]+[R]$.
3. Select * from S; assume there is no index (estimate the worst case)

Read all the pages, the cost is [S]
4. Select * from S where id=10; assume that there is no index (estimate the worst case)

Read all the pages, the cost is [S]
5. Select * from S where name='abc'; assume that there is a B+-tree index on the attribute name with high=3 levels

Read 3 nodes (pages) of the index + 1 page of data. The cost is 4
Exercise 02 (6 marks=3+3)
Consider the B+ tree index of order $d=2$ used in the course (root and intermediate nodes: 5 pointers and 4 keys. Leaf node: 4 entries)

1) Construct a $B+-$ tree for the following set of values $(2,3,5,7,11,17,19,23,29,31$, $35,38,42,47,51)$. Assume that the tree is initially empty and values are inserted in ascending order.

Annex 01

2) Show the form of the $B+-$ tree after each operation of the sequence: Insert 9; Insert 10; Insert 8; Insert 6; Insert 1; Insert 4

Annex 02
Exercise 03 (8 marks)
Consider the following relational schema and SQL query:
Suppliers(sid: integer, sname: char(20), city: char (20))
Supply (sid: integer, pid: integer)
$\operatorname{Parts}($ pid: integer, pname: char(20), price: real)
and the following 2 queries

SELECT *
FROM Supply Y, Suppliers S
WHERE Y.sid=S.sid AND S.city='ELO'

SELECT *
FROM Supply Y, Parts P
WHERE Y.pid=P.pid AND P.prices<1000

And assuming

- suppliers are 10000 tuples stored on 500 pages
- supply are 60000 tuples stored on 1500 pages
- parts are 14000 tuples stored on 700 pages
- 35% of parts have a price less than $1000(\mathrm{SF}($ prices $<1000)=0.35)$
- 7\% of suppliers are from the city 'ELO' (SF(city='ELO')= 0.07)
Q) Estimate the cost of both queries using block nested loop join given buffer = 12 pages

SELECT *
FROM Supply Y, Suppliers S
WHERE Y.sid=S.sid AND S.city='ELO'
Given

- suppliers are 10000 tuples stored on 500 pages so $10000 / 500=20$ tuples/page The plan

(coity $=$ ELo'(Suppliers)) ${ }^{\bowtie}$ Supply

for the branch ($\sigma_{\text {city='ELO' }}($ Suppliers $)$)
\# of tuples $=10000^{*} 0.07=700$
\# of pages $=700 / 20=35$

The cost of $\left(\sigma_{\text {city='ELo' }}(\right.$ Suppliers $\left.)\right) \bowtie$ Supply
$35+35 /(12-2)$ * $1500=$
$35+4 * 1500=6035$

Query 02

SELECT *

FROM Supply Y, Parts P
WHERE Y.pid=P.pid AND P.prices<1000
Given

- parts are 14000 tuples stored on 700 pages, so $14000 / 700=20$ tuples/page

The plan
($\sigma_{\text {prices<1000 }}$ (Parts) $) \bowtie$ Supply
for the branch ($\sigma_{\text {prices }}<1000$ (Parts))
\# of tuples $=14000 * 0.35=4900$
\# of pages $=4900 / 20=245$
The cost of $\left(\sigma_{\text {prices }}<1000(\right.$ Parts $\left.)\right) \bowtie$ Supply
$245+245 /(12-2) * 1500=$
$245+25 * 1500=37745$

Annex 02

