Université d’El Oued
Département d’informatique

Algorithmique avancée et Complexité
Corrigé - Examen du 20 Janvier 2026

Exercice 1 - Notation asymptotique (3 points)
1) Comparaison des fonctions (2 pts)
Le terme dominant de f(n) est n® et celui g(n) est n? logn.
Comme n3 croit plus vite que n?logn, on a
f(n) € ©(n?), g(n) € O(n?logn), et
f(n) € 2(g(m) et g(n) € O(f(n))
2) Affirmation vraie ou fausse (1 pt)
nlogn € 0(n'®)
Vrai

Justification :

Y nlogn Y logn_0
n—1>r-Poo n1-5 - n—1>r-|poo \/ﬁ -

Donc nlogn croit strictement moins vite que n'>, d’oti : nlogn € 0(n'*).

Exercice 2 - Calcul de x™ : algorithmes et complexité (3 points)
1) Complexité temporelle (1 pt)

e Algorithme 1 (itératif)
— Une boucle de n itérations

o(m)

e Algorithme 2 (récursif linéaire)
— Un appel récursif par décrément de n

o(m)

o Algorithme 3 (exponentiation rapide)
— Division du probléme par 2

O(logn)

2) Equation de récurrence (1 pt)

Pour 'algorithme 3 :
T(m) =T (5) +0(1)
2

avec condition initiale :

T(0) = 0(1)

3) Comparaison des algorithmes (1 pt)
o Algorithmes 1 et 2 : complexité linéaire O (n)
e Algorithme 3 : complexité logarithmique O (logn)

Conclusion : L'algorithme 3 est le plus efficace pour de grandes valeurs de n.

Exercice 3 - Tri rapide (QuickSort) (6 points)
Tableau initial : A = [15,9,17,3,12,27,6, 20]

Pivot = premier élément

1) Application pas a pas (2 pts)

Etape 1

Pivot =15

Partition :
e Gauche:|[9, 3, 12, 6]
e Droite: [17, 27, 20]

Etape 2 (Sous-tableau gauche [9, 3, 12, 6])
Pivot=9
Partition :

e Gauche: [3, 6]

e Droite: [12]

Etape 3 (Sous-tableau [3, 6])
Pivot =3
Partition :

e Gauche:[]

e Droite: [6]

Etape 4 (Sous-tableau droit initial)
Pivot =17
Partition :

e Gauche:[]

e Droite: [27, 20]
Etape 5 (Sous-tableau [27, 20])

Pivot = 27
Partition :
e Gauche: [20]
e Droite:]

Résultat final : [3, 6, 9, 12, 15, 17, 20, 27]

2) Pseudo-code de QuickSort (2 pts)

QuickSort (A, low, high):
if low < high:
p « Partition (A, low, high)
QuickSort (A, low, p - 1)
QuickSort (A, p + 1, high)

3) Complexité temporelle (2 pts)

e Meilleur cas (partition équilibrée) : O(nlogn)

o Pire cas (tableau déja trié, pivot extréme) : 0(n?)

Exercice 4 - Programmation dynamique : Alignement de chaines (8 points)
1) Sous-probléme et principe (1 pt)
On définit:
DPJi][j] = colit minimal pour aligner X[1..i] et Y[1..j]
La programmation dynamique est adaptée car :
e les sous-problemes se recouvrent

e le probleme possede une structure optimale

2) Relation de récurrence (2 pts)

DP[i — 1][j] + gap (Suppression)
DP[i][j] = min< DP[i][j — 1] + gap (insertion)
DP[i — 1][j — 1] + cost(x;,y;) (match/substitution)

Conditions initiales :

DP[O][j] = - gap, DP[i][0] =i - gap

3) Diagramme de programmation dynamique (2 pts)

i\j 0 G C A T G C U

o Wl - > | |5 | ¢ |~

> @) > o | o | > [op)
NN
w
w
w
N
w
N | IO | BN | [N

- Colit minimal d’alignement :

DP[7][7] + 4

4) Alignement optimal (1 pt)

Par backtracking a partir de DP[m][n], on obtient un alignement optimal possible, par exemple
(4 substitution):

GATTACA
GCATGCU

5) Implémentation Top-Down avec mémoisation (2 pts)

Align (i, 7Jj):
if 1 = 0: return j
if j = 0: return i

if memo[i] []] existe: return memo[i] []]

cost < 0 si X[i] = Y[Jj], sinon 1

memo [1] []J] < min(
Align(i-1, j-1) + cost,
Align(i-1, 3J) + 1,
Align (i, j-1) + 1

return memo[i] []]

