
Echahid Hamma Lakhdar University - El Oued

Exact Sciences Faculty

Computer Sciences Department

Internet of Things & Cybersecurity– 3rdSem Date: 06/01/2025
Architectures of advanced OS Time limit: 01h30min

Exercice 01 (05 Pts)

Indicate True or False for the following statements. For each incorrect statement,
provide the correction

1. Memory protection ensures that one process cannot access the memory space of
another process in a multitasking system.

2. In a system that uses paging, the page table maps virtual addresses directly to
physical addresses.

3. A process in a running state can be moved to a suspended state without being
terminated.

4. In a multi-core system, the operating system can assign a single task to multiple
cores simultaneously without creating synchronization issues.

5. Interrupt handling in modern operating systems ensures that high-priority inter-
rupts are serviced before lower-priority ones, even if they occur simultaneously.

Exercice 02 (15 Pts)

The subsequent questions reference resources available in the Annex at the end of this
document. Please refer to them as needed to answer these questions.

1. What is the purpose of the module init and module exit macros in the above code?

2. What is the role of the MODULE LICENSE macro, and why is it important in kernel
programming?

1



Architectures of advanced OS 3rdSem 06/01/2025

3. How can you verify that the printk messages appear in the kernel log?

4. What does the insmod command do, and why does it require sudo privileges?

5. How can you check if a module is currently loaded into the kernel?

6. Explain the purpose of dmesg in kernel programming.

7. Why does the kernel module use msleep() during node creation? How does this
simulate real-world behavior?

8. What is the significance of storing the jiffies value in each node? How can this
information be useful in debugging or performance monitoring?

9. How does list for each entry safe prevent crashes when deleting nodes from the
list?

10. Modify the module to calculate and log the total time elapsed (in seconds) from
the creation of the first node to the deletion of the last node. How would you
implement this?

11. If a memory leak occurs in the module, how can you identify and resolve it?
Suggest debugging techniques.

Page 2 of 2



ANNEX
Advanced Linked List Kernel Module

1 Code Implementation

#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/slab.h>

#include <linux/list.h>

#include <linux/jiffies.h>

#include <linux/delay.h>

MODULE_LICENSE("GPL");

MODULE_AUTHOR("Student Name");

MODULE_DESCRIPTION("Advanced Linked List Example");

MODULE_VERSION("1.0");

struct my_node {

int data;

unsigned long timestamp; // Store jiffies at node creation

struct list_head list;

};

static LIST_HEAD(my_list);

static int __init list_init(void) {

struct my_node *new_node;

int i;

for (i = 1; i <= 10; i++) { // Create 10 nodes

new_node = kmalloc(sizeof (* new_node), GFP_KERNEL);

if (! new_node) {

printk(KERN_ERR "Memory allocation failed\n");

return -ENOMEM;

}

new_node ->data = i * 10;

new_node ->timestamp = jiffies; // Capture creation timestamp

list_add_tail (&new_node ->list , &my_list);

printk(KERN_INFO "Node %d created with data: %d at time: %lu\n"

↪→ ,

i, new_node ->data , new_node ->timestamp);

msleep (100); // Simulate processing delay

}

return 0;

1



}

static void __exit list_exit(void) {

struct my_node *node , *tmp;

list_for_each_entry_safe(node , tmp , &my_list , list) {

printk(KERN_INFO "Deleting node with data: %d created at time:

↪→ %lu\n",

node ->data , node ->timestamp);

list_del (&node ->list);

kfree(node);

}

printk(KERN_INFO "All nodes deleted , list cleaned up\n");

}

module_init(list_init);

module_exit(list_exit);

Listing 1: Advanced Linked List Kernel Module

2 Makefile

obj -m += advanced_list.o

all:

make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules

clean:

make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean

Listing 2: Makefile for Advanced Linked List Module

3 Kernel Commands for Testing

make

sudo insmod advanced_list.ko

sudo rmmod advanced_list

dmesg | tail

2



Echahid Hamma Lakhdar University - El Oued

Exact Sciences Faculty

Computer Sciences Department

–Exam Correction –

Internet of Things & Cybersecurity– 3rdSem Date: 06/01/2025
Architectures of advanced OS Time limit: 01h30min

Exercice 01 (05 Pts)

Indicate True or False for the following statements. For each incorrect statement,
provide the correction.

1. Memory protection ensures that one process cannot access the memory space of
another process in a multitasking system.

–Answer: True. Memory protection ensures isolation between processes by
preventing unauthorized access to their memory spaces.

2. In a system that uses paging, the page table maps virtual addresses directly to
physical addresses.

–Answer: False. In a paging system, the page table maps virtual addresses
to page frames, which are then mapped to physical addresses through the MMU
(Memory Management Unit).

3. A process in a running state can be moved to a suspended state without being
terminated.

–Answer: True. A running process can be suspended, typically to allow other
processes to execute, without being terminated.

4. In a multi-core system, the operating system can assign a single task to multiple
cores simultaneously without creating synchronization issues.

1



Architectures of advanced OS 3rdSem 06/01/2025

–Answer: False. When assigning a single task to multiple cores, synchroniza-
tion issues can arise, particularly when multiple threads or processes are access-
ing shared resources. Proper synchronization mechanisms, such as mutexes, are
needed to avoid conflicts.

5. Interrupt handling in modern operating systems ensures that high-priority inter-
rupts are serviced before lower-priority ones, even if they occur simultaneously.

–Answer: True. Interrupts are typically prioritized, with higher-priority in-
terrupts being serviced before lower-priority ones, ensuring timely handling of
critical tasks.

Exercice 02 (15 Pts)

1. What is the purpose of the module init and module exit macros in the above code?

–Answer: The module init macro specifies the function to be executed when the
module is loaded into the kernel, initializing resources or data structures. The
module exit macro specifies the cleanup function to be executed when the module
is unloaded, releasing allocated resources and preventing memory leaks.

2. What is the role of the MODULE LICENSE macro, and why is it important in kernel
programming?

–Answer: The MODULE LICENSE macro declares the licensing terms of the mod-
ule. It ensures compatibility with the kernel’s GPL license. If not defined or
incompatible, the kernel may restrict certain functionalities and issue warnings.

3. How can you verify that the printk messages appear in the kernel log?

–Answer: Use the dmesg command to view the kernel log messages. For example:
[language=bash] dmesg — tail

4. What does the insmod command do, and why does it require sudo privileges?

–Answer: The insmod command inserts a module into the kernel, requiring el-
evated privileges because it modifies the kernel’s runtime environment, which is
critical for system stability.

5. How can you check if a module is currently loaded into the kernel?

–Answer: Use the lsmod command to list all currently loaded modules: [lan-
guage=bash] lsmod — grep advancedlist

6. Explain the purpose of dmesg in kernel programming.

Page 2 of 3



Architectures of advanced OS 3rdSem 06/01/2025

–Answer: dmesg retrieves messages from the kernel ring buffer, useful for de-
bugging and monitoring kernel module activities.

7. Why does the kernel module use msleep() during node creation? How does this
simulate real-world behavior?

–Answer: msleep() introduces a delay, simulating real-world scenarios where pro-
cessing tasks might take time (e.g., interacting with hardware). This highlights
the behavior of the kernel in a realistic multitasking environment.

8. What is the significance of storing the jiffies value in each node? How can this
information be useful in debugging or performance monitoring?

–Answer: The jiffies value records the system’s tick count at node creation,
providing timestamps for events. It helps in debugging timing-related issues and
monitoring module performance.

9. How does list for each entry safe prevent crashes when deleting nodes from the
list?

–Answer: list for each entry safe uses a temporary pointer to store the next
node before deleting the current node. This avoids dereferencing invalid memory
after a node’s deletion.

10. Modify the module to calculate and log the total time elapsed (in seconds) from
the creation of the first node to the deletion of the last node. How would you
implement this?

–Answer: Store the jiffies value at the first node’s creation and again at the
deletion of the last node. Calculate the elapsed time using the formula:

elapsed time (seconds) =
end jiffies− start jiffies

HZ
(1)

Add code in list init to store start jiffies and in list exit to compute and log
the elapsed time.

11. If a memory leak occurs in the module, how can you identify and resolve it? Sug-
gest debugging techniques.

–Answer: Identify memory leaks using tools like kmemleak or by monitoring kernel
logs for allocation warnings. Ensure all allocated memory is freed in module exit.
Add extensive printk logs to trace allocations and deallocations.

Page 3 of 3


