Université d'El Oued Samedi 17 Janvier 2026

Faculté des Sciences Exactes

1% année Master-Informatique

Corrigee Type de Contr6le de Calcul Paralléle

Questions du Cours : (04 points)

Q-1) Pourquoi les réseaux d’interconnexion multi-étages (MINSs) sont-ils utilisés a la place des
commutateurs crossbar a un seul étage ?

R-1) Les réseaux d’interconnexion multi-étages (MINs) sont utilisés a la place des commutateurs
crossbar a un seul étage principalement pour des raisons de co(t, de complexité et de
scalabilité, surtout quand le nombre de ports devient élevé.

Q-2) Donnez un exemple de scénario de blocage dans un réseau Omega ?

R-2) Considérons un réseau Omega 8x8 (N = 8, donc log.8 = 3 étages), composé de commutateurs
2x2.

Connexions demandées simultanément

- Entrée 0 — Sortie 3 (011)

- Entrée 1 — Sortie 2 (010)

Les sorties 2 (010) et 3 (011) ont les deux premiers bits identiques.

Q-3) Quelles sont les limites de CUDA par rapport a la programmation parallele basée sur le CPU ?

R-3) CUDA offre un fort parallélisme massif grace au GPU, mais il présente aussi plusieurs limites
par rapport a la programmation paralléle basée sur le CPU. Ces limites sont a la fois
architecturales, programmatiques et applicatives.

1. Latence et cofit des transferts mémoire CPU <> GPU
2. Portabilité réduite
3. Performances faibles pour taches séquentielles ou peu paralléles
4. Moins de flexibilité que le CPU
5. Modéle mémoire plus complexe
6. Synchronisation limitée
7. Mémoire limitée par rapport au CPU
Q-4) Quel est le role de 1’héte (host) et du Device dans CUDA ?
R-4) Le host est le programme qui s’exécute sur le CPU.

Le device correspond au GPU, ou s’exécutent les kernels CUDA.

Exercice N° 01: (04 points)

Q-1) Appliquer la matrice de routage suivante sur un réseau OMEGA de 8x8:

01234567

73560124

Exercice N° 02 : (06 points)

Le tableau ci-dessous représente les temps d’exécution en secondes de 11 programmes différents.

Programmes 1 2 3 4 5 6 7 8 9 10 Moyen |
Séquentiel 4.8211 8.2812 4.3985 3.2503 4.5570 3.2118 3.2208 3.3760 44168 3.2425 4.2776 |
Threads 2 3.3232 44650 3.5050 3.3009 3.3092 4.5649 3.3175 3.3447 4.1107 3.8410 3.7082 |
Threads 3 3.3464 3.3776 4.6079 3.4077 4.1804 4.5042 3.5958 3.4012 3.3858 4.6997 3.8507 |
Threads 4 3.3990 3.3879 4.5811 3.4650 3.3830 33713 4.5743 3.3740 3.3755 4.5096 3.7421 |
Threads 6 3.6643 3.5352 3.9529 4.5329 3.5873 3.5526 4.9193 3.5718 3.6162 4.8659 3.9798 |
Threads 12 3.7532 3.6965 4.7812 3.9506 3.6968 4.1479 4.6828 3.6765 3.6707 5.0324 4.1089 |
MPI 2 2.5700 25600 2.5800 2.5400 25600 25700 2.5600 2.5600 2.5600 2.5600 2.5655 |
MPI 3 2.6300 2.6200 2.6400 2.6500 2.6300 2.6400 2.6200 2.6400 2.6300 2.6400 2.6340 |
MPI 4 2.6000 2.5900 2.6100 2.5900 2.6000 2.5900 2.6100 2.5900 2.5900 2.6000 2.5999 |
GPU 16x16 0.0459 0.0459 0.0324 0.0236 0.0236 0.0236 0.0194 0.0196 0.0195 0.0188 0.0272 |
GPU 32x32 0.0192 0.0196 0.0193 0.0191 0.0205 0.0186 0.0202 0.0195 0.0193 0.0203 0.0196 |

Q-1) Calculer les valeurs de I’accélération et de I’efficacité dans chaque cas, ensuite dessiner des

courbes ? (02 points)

2 speedup = 0.8441812028117678 efficiency = 0.4220906014058839

3 speedup = 0.6899376555950381 efficiency = 0.22997921853167935
4 speedup = 0.7190216427177577 efficiency = 0.17975541067943943
6 speedup = 0.6663720997143386 efficiency = 0.11106201661905644
12 speedup = 0.6443247754550513 efficiency = 0.05369373128792094

Speedup and Efficiency vs Number of Threads (Last Program)

R-1)
1) Threads:
p:
p:
p:
p:
p:
0.850 1
0.825 1
0.800 +
0.775 -
% 0.750 1
& 0.725 4
0.700
0.675
0.650

—e— Speedup

-m- Efficiency [10

F0.8

F 0.6

Efficiency

- 0.4

F0.2

Number of Threads

T 0.0

2) MPI :

p= 2 speedup = 1.2666015625 efficiency = 0.63330078125
p= 3 speedup = 1.228219696969697 efficiency = 0.4094065656565657
p= 4 speedup = 1.2471153846153846 efficiency = 0.31177884615384616

Speedup and Efficiency vs Number of Threads (Last Program)

1.265 A

1.260

1.255 ~

1.250

1.245 ~

Speedup

1.240 A

1.235 A

1.230 A

—8— Speedup
-m- Efficiency

1.0

0.8

F 0.6

0.4

F0.2

0.0

T T T
2.00 2.25 2.50 2.75 3.00 3.25 3.50
Number of Threads

3) GPU:
p
p

Speedup and Efficiency vs Number of Threads (Last Program)

172 A

170 A

162 A

—e— Speedup

256 speedup = 172.47340425531914 efficiency = 0.6737242353723404
1024 speedup = 159.72906403940888 efficiency = 0.15598541410098524

-m- Efficiency [10

360 4[|)0 SEI)O 660 760 BtI)O
Number of Threads
Q-2) Donnez vos remarques sur les différentes courbes ? (02 points)
R-2) Remarques :
1) Threads:

T T
900 1000

F0.8

0.6

Efficiency

0.4

0.2

0.0

Efficiency

- L’accélération augmente trés faiblement avec le nombre de threads.

- Au-dela de 4 threads, les performances se dégradent.

- L’efficacité chute fortement, atteignant moins de 10 % avec 12 threads.
Interpretation:

- Surcharge (création de threads, synchronisation, contention mémoire)

- Parallélisme limité (Amdahl’s Law)

- Charge de travail insuffisante pour justifier ’utilisation de nombreux threads

2) MPI:

- MPI montre une meilleure accélération que les threads

- Meilleur résultat avec 2 processus MPI

- L’efficacité reste nettement supérieure a celle des threads

Interpretation:

- Meilleure répartition de la charge de travail

- Moins de contention sur la mémoire partagée

- Le colt de communication commence a limiter le passage a 1’échelle au-dela de 2—3 processus

- MPI est plus efficace que les threads pour cette charge de travail

3) GPU:

- L’accélération est deux ordres de grandeur plus élevée

- GPU 32x32 est plus rapide que 16x16

- L’efficacité diminue avec I’augmentation du nombre de threads
Important note:

- DL’efficacité du GPU n’est pas directement comparable a celle du CPU

- Les threads GPU sont légers

- Des milliers de threads sont nécessaires pour masquer la latence mémoire

- Une faible efficacité ne signifie pas de mauvaises performances

Le GPU surpasse clairement les approches CPU

Q-3) Déterminer le point de saturation : a partir de combien de processus 1’accélération n’augmente
plus significativement ? (01 points)
R-3) Points de saturation :
1) Threads:
- Le meilleur speedup est atteint avec 2—4 threads
- A partir de 4 threads, ’accélération stagne puis diminue
- Les gains supplémentaires deviennent négligeables (< 3%)

Alors, le point de saturation = 4 threads

2) MPI:
- Le speedup maximal est déja atteint avec 2 processus
- Les variations entre 2, 3 et 4 processus sont trés faibles
- L’augmentation du nombre de processus n’apporte plus de gain réel

Alors, le point de saturation =~ 2 processus MPI

Q-4) Comparer les résultats avec le nombre idéal de processus : pourquoi certaines versions
paralléles (ex : 12 processus) ont un temps moyen supérieur a 6 processus ? (01 points)
R-4) Le nombre idéal de processus est atteint bien avant le maximum disponible.
Au-dela de ce point (ici = 4—6 processus), I’augmentation du nombre de processus entraine une
surcharge (synchronisation, contention mémoire, partie séquentielle du code) supérieure au gain
apporté par le parallélisme. C’est pourquoi certaines versions paralléles, comme celle a 12

processus, présentent un temps moyen supérieur a celle a 6 processus.

Exercice N° 03 : (06 points)

Q-1) Ecrire un programme Python utilisant la bibliothéque MPI pour calculer le produit de deux

matrices R=A x B.

Données :
e A :matrice de taille L x K
e B: matrice de taille K x C
e R: matrice résultat de taille L x C

R-1)

from mpidpy import MPI
import numpy as np

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()

Dimensions des matrices

L=8 #lignesde A

K =6 # colonnes de A = lignes de B
C=5 #colonnes de B

rows_per_proc = L // size

= ==

Processus 0 (HOST)

= ==

if rank ==0:
A =np.random.rand(L, K)
B = np.random.rand(K, C)
R = np.zeros((L, C))

Envoi des données aux autres processus
for p in range(1, size):

start = p * rows_per_proc

end = start + rows_per_proc
comm.Send(A[start:end, :], dest=p, tag=0)
comm.Send(B, dest=p, tag=1)

Calcul local (partie du processus 0)
A _local = A[0:rows_per_proc, :]
R[0:rows_per_proc, :] = np.dot(A_local, B)

Réception des résultats

for p in range(l, size):
start = p * rows_per_proc
end = start + rows_per_proc
comm.Recv(R[start:end, :], source=p, tag=2)

print("Matrice A :\n", A)
print("\nMatrice B :\n", B)
print("\nMatrice R= Ax B :\n", R)

= ==

Autres processus

= ==

else:
A _local = np.zeros((rows_per_proc, K))
B = np.zeros((K, C))
R_local = np.zeros((rows_per_proc, C))

Réception des données
comm.Recv(A_local, source=0, tag=0)
comm.Recv(B, source=0, tag=1)

Calcul local
R_local = np.dot(A_local, B)

Envoi du résultat
comm.Send(R_local, dest=0, tag=2)

Bon Courage Bonne Chance

