

Echahid Hamma Lakhdar University - El Oued

Faculty of Exact Sciences

Department of Computer Science 2nd master's degree

Duration: 1 hour 30 minutes Date 22/01/2026

Natural Language Processing (NLP) Exam

--

Questions

1. Name three types of corpora and give an example of each.

1. General English Corpora

Brown Corpus: First million-word electronic corpus

British National Corpus (BNC): 100 million words of British English

Corpus of Contemporary American English (COCA): 1 billion words

2. Web-Scale Corpora

Common Crawl: Hundreds of billions of web pages

Google Books Ngrams: Millions of books scanned

Wikipedia Dump: Entire Wikipedia content

3. Specialized Corpora

PubMed: Biomedical literature

Legal Case Law: Court decisions and statutes

Twitter/Reddit Data: Social media text

2. What are the main goals of text preprocessing? List at least three common

preprocessing steps.

Text data in its raw form often contains inconsistencies, errors, and noise that can

negatively impact model training. Cleaning text data is essential because NLP

algorithms rely on understanding word usage and semantic relationships within the

text.

Three common preprocessing steps :

 Data Cleaning: Removing special characters, numbers, and extra spaces.

 Lowercasing: Converting text to lowercase to avoid duplicates due to case

differences.

 Tokenization: Splitting text into smaller units called tokens (words, sentences).

3. How does lemmatization help with vocabulary size reduction?

Normalize word forms Groups different forms of the same word together, reducing

vocabulary size and improving word frequency analysis.

4. What is Named Entity Recognition (NER)? What types of entities can spaCy identify?

identifies real-world objects (i.e., anything that can be denoted with a proper name)

and classifies them into predefined categories.

spaCy can identify the following:

 PERSON: people (existing or fictional).

 LOC: locations.

 ORG: organizations such as companies, agencies, institutions, organizations,

etc.

 GPE: countries, cities, states.

5. What are word embeddings? Name two popular word embedding models

Word embeddings are dense vector representations of words, capturing semantic

relationships.

Name two popular word embedding models

 Word2Vec: A model that learns vector representations of words based on their

context.

 GloVe: A model based on the global co-occurrence of words in a corpus.

Exercice 1

Given the following short movie reviews, each labeled with a genre, either comedy or action:

Class Movie reviews

Comedy fun, friends, laugh

Action fast, furious, shoot

Comedy friends, fly, fast, fun

Action furious, shoot, fun

Action fly, fast, shoot, laugh

And a new movie review D: fast, family, shoot, fly

Compute the most likely class for D. Assume a Naive Bayes classifier.

Solution

New review D: fast, family, shoot, fly

Vocabulary = {fun, friends, laugh, fast, furious, shoot, fly, family} → 8 unique words.

Total documents = 5

Comedy = 2 documents

Action = 3 documents

P(Comedy) = 2/5 = 0.4

P(Action) = 3/5 = 0.6

Comedy: = 7 words total

Action: = 10 words total

Comedy probabilities:

P(fast∣ C)=(1+1)/15=2/15

P(family∣ C)=(0+1)/15=1/15

P(shoot∣ C)=(0+1)/15=1/15

P(fly∣ C)=(1+1)/15=2/15

P(D∣ Comedy)= (2/15)× (1/15) × (1/15)× (2/15)=4/50625 ≈ 7.90×10
−5

Action probabilities:

P(fast∣ A)=(2+1)/18=3/18=1/6

P(family∣ A)=(0+1)/18=1/18

P(shoot∣ A)=(3+1)/18=4/18=2/9

P(fly∣ A)=(1+1)/18=2/18=1/9

P(D∣ Action)= (1/6)× (1/18)×(2/9)× (1/9)=2/8748=1//4374 ≈ 2.29×10
−4

P(Comedy∣ D)=0.4×7.90×10
−5

=3.16×10−5

P(Action∣ D)=0.6×2.29×10
−4

=1.374×10−4

P(Action∣ D)>P(Comedy∣ D)1.374×10−4>3.16×10−5

The most likely class is: Action

Exercice 2

Solution

1. In a Recurrent Neural Network (RNN) used for language modeling explain

why hidden state h
(t)

 depends on both: x
(t)

 (the current input) and h
(t−1)

 (the previous

hidden state)

(RNN) remember previous information using hidden states and connect it to the current task.

x(t) represents what's happening now in the sequence

h(t-1) serves as a compressed memory of all previous inputs {x(1), x(2), ..., x(t-1)}

2. Why can't bidirectional RNNs be used for language modeling?

They are not applicable to Language Modeling, because in Language Modeling

only left context is available.

Exercice 3

 Implement a function called RuleBasedSentimentAnalyzer() that analyzes the sentiment of a

given text using hand-crafted rules, and lexicons, that handle negation and determine

sentiment label : "POSITIVE" , "NEGATIVE" or "NEUTRAL".

Solution

import re

from collections import defaultdict

class SentimentLexicon:

 def __init__(self):

 self.positive_words = {

 'good', 'great', 'excellent', 'amazing', 'wonderful', 'fantastic',

 'awesome', 'brilliant', 'love', 'like', 'nice', 'perfect', 'best',

 'beautiful', 'outstanding', 'superb', 'terrific', 'fabulous',

 'marvelous', 'exceptional', 'pleasant', 'delightful', 'satisfied',

 'happy', 'pleased', 'content', 'joyful', 'ecstatic', 'thrilled'

 }

 self.negative_words = {

 'bad', 'terrible', 'awful', 'horrible', 'worst', 'hate', 'dislike',

 'ugly', 'poor', 'disappointing', 'unpleasant', 'disgusting',

 'annoying', 'frustrating', 'angry', 'mad', 'upset', 'sad',

 'depressing', 'miserable', 'horrific', 'dreadful', 'abysmal',

 'atrocious', 'appalling', 'lousy', 'rubbish', 'garbage', 'trash'

 }

 self.negation_words = {

 'not', "n't", 'no', 'never', 'nothing', 'none', 'nobody',

 'nowhere', 'neither', 'nor', 'cannot', 'without'

 }

 self.intensifiers = {

 'very': 1.5, 'extremely': 2.0, 'really': 1.3, 'quite': 1.2,

 'absolutely': 2.0, 'completely': 1.8, 'totally': 1.7,

 'utterly': 2.0, 'highly': 1.5, 'super': 1.4, 'incredibly': 1.8

 }

 self.diminishers = {

 'slightly': 0.7, 'somewhat': 0.8, 'barely': 0.6,

 'hardly': 0.5, 'almost': 0.9, 'partially': 0.8

 }

def RuleBasedSentimentAnalyzer(text, lexicon):

 # Step 1: Clean and tokenize the text

 def clean_and_tokenize(text):

 # Convert to lowercase

 text = text.lower()

 # Remove punctuation except apostrophes for contractions

 text = re.sub(r'[^\w\s\']', ' ', text)

 # Tokenize by splitting on whitespace

 tokens = text.split()

 return tokens

 tokens = clean_and_tokenize(text)

 # Initialize variables

 score = 0.0

 components = []

 sentiment_words_count = 0

 # Process tokens

 for i, token in enumerate(tokens):

 current_modifier = 1.0

 current_word_type = None

 current_word = token

 # Check for intensifiers/diminishers in previous positions (window of 2)

 for j in range(max(0, i-2), i):

 if tokens[j] in lexicon.intensifiers:

 current_modifier *= lexicon.intensifiers[tokens[j]]

 components.append(('intensifier', tokens[j], lexicon.intensifiers[tokens[j]]))

 elif tokens[j] in lexicon.diminishers:

 current_modifier *= lexicon.diminishers[tokens[j]]

 components.append(('diminisher', tokens[j], lexicon.diminishers[tokens[j]]))

 # Check for negation in previous positions (window of 3)

 negated = False

 for j in range(max(0, i-3), i):

 if tokens[j] in lexicon.negation_words:

 negated = True

 components.append(('negation', tokens[j], -1.0))

 break

 # Check if current word is a sentiment word

 if token in lexicon.positive_words:

 current_word_type = 'positive'

 base_score = 1.0

 sentiment_words_count += 1

 elif token in lexicon.negative_words:

 current_word_type = 'negative'

 base_score = -1.0

 sentiment_words_count += 1

 # Apply negation if needed

 if current_word_type:

 if negated:

 base_score *= -1.0 # Flip sentiment if negated

 current_modifier *= 0.7 # Reduce strength when negated

 # Apply modifier

 word_score = base_score * current_modifier

 score += word_score

 # Record component

 if negated:

 components.append((f'negated_{current_word_type}', token, word_score))

 else:

 components.append((current_word_type, token, word_score))

 # Calculate confidence

 confidence = min(1.0, abs(score) / (sentiment_words_count + 1e-6))

 # Determine sentiment label

 if score > 0.5:

 sentiment = "POSITIVE"

 elif score < -0.5:

 sentiment = "NEGATIVE"

 else:

 sentiment = "NEUTRAL"

 return {

 'sentiment': sentiment,

 'score': round(score, 2),

 'confidence': round(confidence, 2),

 'components': components

 }

