Echahid Hamma Lakhdar University - El Oued
Faculty of Exact Sciences

Department of Computer Science 2nd master's degree
Duration: 1 hour 30 minutes Date 22/01/2026

Natural Language Processing (NLP) Exam

Questions

1. Name three types of corpora and give an example of each.
1. General English Corpora
Brown Corpus: First million-word electronic corpus
British National Corpus (BNC): 100 million words of British English
Corpus of Contemporary American English (COCA): 1 billion words
2. Web-Scale Corpora
Common Crawl: Hundreds of billions of web pages
Google Books Ngrams: Millions of books scanned
Wikipedia Dump: Entire Wikipedia content
3. Specialized Corpora
PubMed: Biomedical literature
Legal Case Law: Court decisions and statutes
Twitter/Reddit Data: Social media text

2. What are the main goals of text preprocessing? List at least three common
preprocessing steps.

Text data in its raw form often contains inconsistencies, errors, and noise that can
negatively impact model training. Cleaning text data is essential because NLP
algorithms rely on understanding word usage and semantic relationships within the
text.
Three common preprocessing steps :

o Data Cleaning: Removing special characters, numbers, and extra spaces.

e Lowercasing: Converting text to lowercase to avoid duplicates due to case

differences.

e Tokenization: Splitting text into smaller units called tokens (words, sentences).

3. How does lemmatization help with vocabulary size reduction?

Normalize word forms Groups different forms of the same word together, reducing
vocabulary size and improving word frequency analysis.

4. What is Named Entity Recognition (NER)? What types of entities can spaCy identify?
identifies real-world objects (i.e., anything that can be denoted with a proper name)
and classifies them into predefined categories.
spaCy can identify the following:

e PERSON: people (existing or fictional).
e LOC: locations.



e ORG: organizations such as companies, agencies, institutions, organizations,
etc.
e GPE: countries, cities, states.
5. What are word embeddings? Name two popular word embedding models
Word embeddings are dense vector representations of words, capturing semantic
relationships.
Name two popular word embedding models
e Word2Vec: A model that learns vector representations of words based on their
context.
e GloVe: A model based on the global co-occurrence of words in a corpus.

Exercice 1

Given the following short movie reviews, each labeled with a genre, either comedy or action:

Class Movie reviews
Comedy fun, friends, laugh
Action fast, furious, shoot
Comedy friends, fly, fast, fun
Action furious, shoot, fun
Action fly, fast, shoot, laugh

And a new movie review D: fast, family, shoot, fly

Compute the most likely class for D. Assume a Naive Bayes classifier.
Solution

New review D: fast, family, shoot, fly

Vocabulary = {fun, friends, laugh, fast, furious, shoot, fly, family} — 8 unique words.

Total documents =5
Comedy = 2 documents
Action = 3 documents

P(Comedy) =2/5=0.4
P(Action) =3/5=10.6
Comedy: = 7 words total
Action: = 10 words total

Comedy probabilities:

P(fast| C)=(1+1)/15=2/15
P(family| C)=(0+1)/15=1/15
P(shoot| C)=(0+1)/15=1/15
P(flyl C)=(1+1)/15=2/15



P(D| Comedy)= (2/15 )x (1/15) x (1/15)x (2/15)=4/50625 ~ 7.90x10™°

Action probabilities:

P(fast|] A)=(2+1)/18=3/18=1/6
P(family] A)=(0+1)/18=1/18
P(shoot| A)=(3+1)/18=4/18=2/9
P(flyl A)=(1+1)/18=2/18=1/9

P(DI Action)= (1/6)x (1/18)x(2/9)x (1/9)=2/8748=1//4374 ~2.29x10"*
P(Comedy| D)=0.4x7.90x10°=3.16x10-5

P(Action| D)=0.6x2.29x10 *=1.374x10—4

P(Action| D)>P(Comedy| D)1.374x10-4>3.16x10-5

The most likely class is: Action

Exercice 2
Solution

1. In a Recurrent Neural Network (RNN) used for language modeling explain
why hidden state h® depends on both: x® (the current input) and h®™" (the previous
hidden state)

(RNN) remember previous information using hidden states and connect it to the current task.
X(t) represents what's happening now in the sequence
h(t-1) serves as a compressed memory of all previous inputs {x(1), x(2), ..., X(t-1)}

2. Why can't bidirectional RNNs be used for language modeling?
They are not applicable to Language Modeling, because in Language Modeling
only left context is available.

Exercice 3

Implement a function called RuleBasedSentimentAnalyzer() that analyzes the sentiment of a
given text using hand-crafted rules, and lexicons, that handle negation and determine

sentiment label : "POSITIVE" , "NEGATIVE" or "NEUTRAL".
Solution

import re

from collections import defaultdict

class SentimentLexicon:
def __init__ (self):
self.positive_words = {



'good’, ‘great’, 'excellent’, 'amazing', ‘wonderful’, ‘fantastic’,
‘awesome’, ‘brilliant’, 'love’, 'like’, 'nice’, 'perfect’, 'best’,
‘beautiful’, 'outstanding’, 'superb’, ‘terrific', ‘fabulous’,
'marvelous’, 'exceptional’, 'pleasant’, 'delightful’, 'satisfied’,
‘happy’, 'pleased’, ‘content’, 'joyful’, ‘ecstatic’, 'thrilled’

self.negative_words = {
'bad’, 'terrible’, "awful’, 'horrible’, ‘worst', 'hate’, 'dislike’,
‘ugly’, 'poor’, 'disappointing’, 'unpleasant’, 'disgusting’,
‘annoying', 'frustrating’, 'angry’, 'mad’, 'upset’, ‘sad’,
'depressing’, 'miserable’, 'horrific', 'dreadful’, 'abysmal’,
‘atrocious', ‘appalling’, 'lousy’, 'rubbish’, ‘garbage’, 'trash’

self.negation_words = {
‘not’, "n't", 'no’, 'never’, 'nothing’, 'none’, 'nobody’,
‘nowhere’, 'neither’, 'nor’, ‘cannot’, 'without'

self.intensifiers = {
‘very': 1.5, 'extremely": 2.0, 'really": 1.3, 'quite”: 1.2,
‘absolutely': 2.0, ‘completely": 1.8, 'totally": 1.7,
‘utterly': 2.0, 'highly": 1.5, 'super': 1.4, 'incredibly": 1.8

self.diminishers = {
'slightly": 0.7, 'somewhat': 0.8, 'barely": 0.6,
‘hardly": 0.5, "almost': 0.9, 'partially’: 0.8

def RuleBasedSentimentAnalyzer(text, lexicon):

# Step 1: Clean and tokenize the text
def clean_and_tokenize(text):



# Convert to lowercase

text = text.lower()

# Remove punctuation except apostrophes for contractions
text = re.sub(r'[MWw\s\', ', text)

# Tokenize by splitting on whitespace

tokens = text.split()

return tokens

tokens = clean_and_tokenize(text)

# Initialize variables

score = 0.0

components = []
sentiment_words_count =0

# Process tokens

for i, token in enumerate(tokens):
current_maodifier = 1.0
current_word_type = None
current_word = token

# Check for intensifiers/diminishers in previous positions (window of 2)
for j in range(max(0, i-2), i):
if tokens[j] in lexicon.intensifiers:
current_modifier *= lexicon.intensifiers[tokens][j]]
components.append((‘intensifier’, tokens[j], lexicon.intensifiers[tokens[j]]))
elif tokens[j] in lexicon.diminishers:
current_modifier *= lexicon.diminishers[tokens[j]]
components.append(('diminisher’, tokens[j], lexicon.diminishers[tokens[j]]))

# Check for negation in previous positions (window of 3)
negated = False
for j in range(max(O0, i-3), i):
if tokens][j] in lexicon.negation_words:
negated = True
components.append(('negation’, tokens[j], -1.0))



break

# Check if current word is a sentiment word

if token in lexicon.positive_words:
current_word_type = 'positive’'
base _score =1.0
sentiment_words_count +=1

elif token in lexicon.negative_words:
current_word_type = 'negative'
base_score =-1.0
sentiment_words_count +=1

# Apply negation if needed
if current_word_type:
if negated:
base_score *=-1.0 # Flip sentiment if negated
current_modifier *= 0.7 # Reduce strength when negated

# Apply modifier
word_score = base_score * current_modifier
score +=word_score

# Record component
if negated:

components.append((f'negated_{current_word_type}', token, word_score))
else:

components.append((current_word_type, token, word_score))

# Calculate confidence
confidence = min(1.0, abs(score) / (sentiment_words_count + 1e-6))

# Determine sentiment label
if score > 0.5:

sentiment = "POSITIVE"
elif score < -0.5:

sentiment = "NEGATIVE"



else:
sentiment = "NEUTRAL"

return {
'sentiment”: sentiment,
'score’: round(score, 2),
‘confidence': round(confidence, 2),
‘components': components



