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Questions  

1. Name three types of corpora and give an example of each. 

1. General English Corpora 

Brown Corpus: First million-word electronic corpus 

British National Corpus (BNC): 100 million words of British English 

Corpus of Contemporary American English (COCA): 1 billion words 

2. Web-Scale Corpora 

Common Crawl: Hundreds of billions of web pages 

Google Books Ngrams: Millions of books scanned 

Wikipedia Dump: Entire Wikipedia content 

3. Specialized Corpora                                                                                                                          

PubMed: Biomedical literature 

Legal Case Law: Court decisions and statutes 

Twitter/Reddit Data: Social media text 

2. What are the main goals of text preprocessing? List at least three common 

preprocessing steps. 

Text data in its raw form often contains inconsistencies, errors,  and noise that can 

negatively impact model training. Cleaning text data is essential because NLP 

algorithms rely on understanding word usage and semantic relationships within the 

text. 

Three common preprocessing steps :  

 Data Cleaning: Removing special characters, numbers, and extra spaces. 

 Lowercasing: Converting text to lowercase to avoid duplicates due to case 

differences. 

 Tokenization: Splitting text into smaller units called tokens (words, sentences). 

3. How does lemmatization help with vocabulary size reduction? 

Normalize word forms Groups different forms of the same word together, reducing 

vocabulary size and improving word frequency analysis. 

4. What is Named Entity Recognition (NER)? What types of entities can spaCy identify? 

identifies real-world objects (i.e., anything that can be denoted with a proper name) 

and classifies them into predefined categories. 

spaCy can identify the following: 

 PERSON: people (existing or fictional). 

 LOC: locations. 



 
 

 ORG: organizations such as companies, agencies, institutions, organizations, 

etc. 

 GPE: countries, cities, states. 

5. What are word embeddings? Name two popular word embedding models 

Word embeddings are dense vector representations of words, capturing semantic 

relationships. 

Name two popular word embedding models 

 Word2Vec: A model that learns vector representations of words based on their 

context. 

 GloVe: A model based on the global co-occurrence of words in a corpus. 

 

Exercice 1  

Given the following short movie reviews, each labeled with a genre, either comedy or action: 

 

Class  Movie reviews 

Comedy fun, friends, laugh 

Action fast, furious, shoot 

Comedy friends, fly, fast, fun  

Action furious, shoot, fun  

Action fly, fast, shoot, laugh  

 

And a new movie review D: fast, family, shoot, fly 

Compute the most likely class for D. Assume a Naive Bayes classifier. 

Solution 

New review D: fast, family, shoot, fly 

Vocabulary = {fun, friends, laugh, fast, furious, shoot, fly, family} → 8 unique words. 

Total documents = 5 

Comedy = 2 documents 

Action = 3 documents 

P(Comedy) = 2/5 = 0.4 

P(Action) = 3/5 = 0.6 

Comedy: = 7 words total 

Action: = 10 words total 

Comedy probabilities: 

P(fast∣ C)=(1+1)/15=2/15 

P(family∣ C)=(0+1)/15=1/15 

P(shoot∣ C)=(0+1)/15=1/15 

P(fly∣ C)=(1+1)/15=2/15 

   

    



 
 

P(D∣ Comedy)= (2/15 )× (1/15) × (1/15)× (2/15)=4/50625 ≈ 7.90×10
−5

 

Action probabilities: 

P(fast∣ A)=(2+1)/18=3/18=1/6 

P(family∣ A)=(0+1)/18=1/18 

P(shoot∣ A)=(3+1)/18=4/18=2/9 

P(fly∣ A)=(1+1)/18=2/18=1/9 

P(D∣ Action)= (1/6)× (1/18)×(2/9)× (1/9)=2/8748=1//4374 ≈ 2.29×10
−4

 

P(Comedy∣ D)=0.4×7.90×10
−5

=3.16×10−5 

P(Action∣ D)=0.6×2.29×10
−4

=1.374×10−4 

P(Action∣ D)>P(Comedy∣ D)1.374×10−4>3.16×10−5 

The most likely class is: Action 

Exercice 2  

Solution  

1. In a Recurrent Neural Network (RNN) used for language modeling explain 

why hidden state h
(t)

 depends on both: x
(t)

 (the current input) and  h
(t−1)

 (the previous 

hidden state) 

(RNN) remember previous information using hidden states and connect it to the current task. 

x(t) represents what's happening now in the sequence 

h(t-1) serves as a compressed memory of all previous inputs {x(1), x(2), ..., x(t-1)} 

 

 

2. Why can't bidirectional RNNs be used for language modeling? 

They are not applicable to Language Modeling, because in Language Modeling 

only left context is available. 

Exercice 3 

 Implement a function called RuleBasedSentimentAnalyzer() that analyzes the sentiment of a 

given text using hand-crafted rules, and lexicons, that  handle negation and determine 

sentiment label : "POSITIVE" , "NEGATIVE" or "NEUTRAL". 

Solution 

import re 

from collections import defaultdict 

 

class SentimentLexicon: 

    def __init__(self): 

        self.positive_words = { 

 

    

 

 

   



 
 

            'good', 'great', 'excellent', 'amazing', 'wonderful', 'fantastic', 

            'awesome', 'brilliant', 'love', 'like', 'nice', 'perfect', 'best', 

            'beautiful', 'outstanding', 'superb', 'terrific', 'fabulous', 

            'marvelous', 'exceptional', 'pleasant', 'delightful', 'satisfied', 

            'happy', 'pleased', 'content', 'joyful', 'ecstatic', 'thrilled' 

        } 

         

        self.negative_words = { 

            'bad', 'terrible', 'awful', 'horrible', 'worst', 'hate', 'dislike', 

            'ugly', 'poor', 'disappointing', 'unpleasant', 'disgusting', 

            'annoying', 'frustrating', 'angry', 'mad', 'upset', 'sad', 

            'depressing', 'miserable', 'horrific', 'dreadful', 'abysmal', 

            'atrocious', 'appalling', 'lousy', 'rubbish', 'garbage', 'trash' 

        } 

         

        self.negation_words = { 

            'not', "n't", 'no', 'never', 'nothing', 'none', 'nobody', 

            'nowhere', 'neither', 'nor', 'cannot', 'without' 

        } 

         

        self.intensifiers = { 

            'very': 1.5, 'extremely': 2.0, 'really': 1.3, 'quite': 1.2, 

            'absolutely': 2.0, 'completely': 1.8, 'totally': 1.7, 

            'utterly': 2.0, 'highly': 1.5, 'super': 1.4, 'incredibly': 1.8 

        } 

         

        self.diminishers = { 

            'slightly': 0.7, 'somewhat': 0.8, 'barely': 0.6, 

            'hardly': 0.5, 'almost': 0.9, 'partially': 0.8 

        } 

 

 

def RuleBasedSentimentAnalyzer(text, lexicon): 

 

    # Step 1: Clean and tokenize the text 

    def clean_and_tokenize(text): 



 
 

        # Convert to lowercase 

        text = text.lower() 

        # Remove punctuation except apostrophes for contractions 

        text = re.sub(r'[^\w\s\']', ' ', text) 

        # Tokenize by splitting on whitespace 

        tokens = text.split() 

        return tokens 

     

    tokens = clean_and_tokenize(text) 

     

    # Initialize variables 

    score = 0.0 

    components = [] 

    sentiment_words_count = 0 

     

    # Process tokens 

    for i, token in enumerate(tokens): 

        current_modifier = 1.0 

        current_word_type = None 

        current_word = token 

         

        # Check for intensifiers/diminishers in previous positions (window of 2) 

        for j in range(max(0, i-2), i): 

            if tokens[j] in lexicon.intensifiers: 

                current_modifier *= lexicon.intensifiers[tokens[j]] 

                components.append(('intensifier', tokens[j], lexicon.intensifiers[tokens[j]])) 

            elif tokens[j] in lexicon.diminishers: 

                current_modifier *= lexicon.diminishers[tokens[j]] 

                components.append(('diminisher', tokens[j], lexicon.diminishers[tokens[j]])) 

         

        # Check for negation in previous positions (window of 3) 

        negated = False 

        for j in range(max(0, i-3), i): 

            if tokens[j] in lexicon.negation_words: 

                negated = True 

                components.append(('negation', tokens[j], -1.0)) 



 
 

                break 

         

        # Check if current word is a sentiment word 

        if token in lexicon.positive_words: 

            current_word_type = 'positive' 

            base_score = 1.0 

            sentiment_words_count += 1 

        elif token in lexicon.negative_words: 

            current_word_type = 'negative' 

            base_score = -1.0 

            sentiment_words_count += 1 

         

        # Apply negation if needed 

        if current_word_type: 

            if negated: 

                base_score *= -1.0  # Flip sentiment if negated 

                current_modifier *= 0.7  # Reduce strength when negated 

             

            # Apply modifier 

            word_score = base_score * current_modifier 

            score += word_score 

             

            # Record component 

            if negated: 

                components.append((f'negated_{current_word_type}', token, word_score)) 

            else: 

                components.append((current_word_type, token, word_score)) 

     

    # Calculate confidence 

    confidence = min(1.0, abs(score) / (sentiment_words_count + 1e-6)) 

     

    # Determine sentiment label 

    if score > 0.5: 

        sentiment = "POSITIVE" 

    elif score < -0.5: 

        sentiment = "NEGATIVE" 



 
 

    else: 

        sentiment = "NEUTRAL" 

     

    return { 

        'sentiment': sentiment, 

        'score': round(score, 2), 

        'confidence': round(confidence, 2), 

        'components': components 

    } 

 

 

 

 


