

2 /1:Page

University of Eloued

Faculty of Exact Sciences

Department of Computer science

For Second-year Master: IA & Data Science
University season: 2025/2026

Correction Make-up exam in the Module:Big Data

Analytics
brieflyAnswer these questions p) : 60: (01EX

1- Distinguish between batch processing and stream processing with one example for each?

Batch = periodic, large‑scale processing with higher latency.

Example: Calculating monthly payroll for all employees.

Stream = continuous, real‑time processing with low latency.

Example: Real‑time fraud detection in credit card transactions.

2- Compare RDDs, DataFrames, and Datasets. When would you prefer each one?

When to prefer each:

RDD: When you need full control, custom logic, or are processing unstructured data where schemas don’t help.

DataFrame: For most structured data pipelines, SQL‑like queries, and performance‑focused analytics.

Dataset: When you need *type safety for compile‑time checking while still getting optimized execution.

3- Explain in detail the concept of shuffling within the context of MapReduce. Why is it considered a

costly step in terms of performance?

he shuffle step is the process that:Redistributes intermediate data ,Prepares this data before the Reduce phase

begins.shuffle ensures the reduce function receives all values for a given key in one place. Without shuffle,

reducers wouldn’t know which data belongs together.

Why Shuffling Is Considered Costly: Large Data Transfers Over the Network, Disk I/O Overhead,Sorting and

Grouping Overhead, Load Imbalance (Data Skew(.

Mark √ for the correct answer p) 4: (0 02EX

1) What is the definition of an RDD in Apache Spark? b)A Resilient Distributed Dataset

2) Which component for the reduction of intermediate data before the final reduce operation? b)Combiner

2 /2:Page

3)Which technology is primarily used for real-time processing of massive datasets? a)Apache Spark

EX 03 : (04 p) :

A text file, clients.txt, is provided on HDFS. Write a MapReduce program (Java or pseudocode) that:

1) public void map(LongWritable key, Text value, Context context)

 throws IOException, InterruptedException {

 String line = value.toString();

 String[] tokens = line.split("\\s+"); // découpe sur les espaces

 for (String token : tokens) {

 if (!token.isEmpty()) {

 word.set(token);

 context.write(word, one); // émettre (mot, 1) } } }

public void reduce(Text key, Iterable<IntWritable> values, Context context)

 throws IOException, InterruptedException {

 int sum = 0;

 for (IntWritable val : values) {

 sum += val.get(); // additionne chaque 1 }

 context.write(key, new IntWritable(sum)); // (mot, fréquence) }

2) public void map(LongWritable key, Text value, Context context)

 throws IOException, InterruptedException {

 String line = value.toString();

 String[] tokens = line.split("\\s+");

 for (String token : tokens) {

 if (!token.isEmpty()) {

 word.set(token);

 context.write(word, one); // Emit (word,1) } } }

public void reduce(Text key, Iterable<IntWritable> values, Context context)

 throws IOException, InterruptedException {

 int sum = 0;

 for (IntWritable val : values) {

 sum += val.get(); // Summing all occurrences }

 context.write(key, new IntWritable(sum)); }

EX 04 : (06 p) :Instructions: Assume that sc is your SparkContext

1)

2)

rddA = sc.parallelize([10,20,30,40,50])

print(rddA.count())

3)

doubleRDD = rddA.map(lambda x: x*2)

print(doubleRDD.collect())

