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EXERCISE 0.1 (6pts). Let R be a commutative ring. Prove the following
(1) If p is a prime ideal, then \/p = p. _
(2) If R is a PID. Consider the sum (a) + (b) = (¢). Show that ¢ = ged(a, b).
(3) Give an example of a prime ideal which is not maximal (Think of the ring of multivariable polynomlals}
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EXERCISE 0.2 (3pts). Let R be a commutative ring and S = R p where p is a prime ideal.
(a) Show that S is a multiplicative set. 5

(b) Show that a ring has exactly one maximal ideal if and only if the nonunits form an ideal (This called local ring).
(c) Let S7IR be the localization R with respect to S. Show that this ring is local.
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EXERCISE 0.3 (6 pts). Let R be a commutative ring and I, J two ideals of R. .
(1) Prove that \/Iﬂ = T M/
( ) Show that /T = v/T.

) Prove that R/ I is reduced (i.e. has no non-zero nilpotents) if and only if T = /T.
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EXERCISE 0.4 (6pts). Let R be a Noetherian ring, M = (m) a cyclic R-module and N ¢ M a submodule.

(1) Define I := {r € R|rm € N }. Show that I is an ideal of R,
(2) Prove that N = I'm.

(3) Using the fact that R is Noetherlan prove that N is finitely generated.
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