

Exam
 Sunday, 25 January 2026

Exercise 1. [7 points]

Consider \mathbb{R} equipped with the distance

$$\forall x, y \in \mathbb{R} : d(x, y) = |e^x - e^y|.$$

- (1) Find $B(0, 1)$ the open ball of center 0 and radius 1.
- (2) Let $A =]-\infty, 0]$. Prove that A is bounded and closed in (\mathbb{R}, d) .
- (3) Prove that (\mathbb{R}, d) is not complete (indication : use the sequence $x_n = -n$, $n \in \mathbb{N}$).
- (4) Prove that A is not compact.

Exercise 2. [5 points]

- (1) Consider

$$\forall x, y \in \mathbb{R} : \delta(x, y) = \ln(1 + |x - y|).$$

Prove that δ is a distance on \mathbb{R} .

- (2) Let $E = C([a, b], \mathbb{R})$ be the vector space of continuous functions on the closed and bounded interval $[a, b]$ equipped with the uniform norm $\|f\|_\infty = \sup_{x \in [a, b]} |f(x)|$, $f \in E$. Consider

$$\varphi : (E, \|\cdot\|_\infty) \rightarrow (\mathbb{R}, |\cdot|), f \mapsto \varphi(f) = \int_a^b f(x) dx - f\left(\frac{a+b}{2}\right).$$

Prove that φ is linear and continuous.

Exercise 3. [8 points]

Let $n \in \mathbb{N}$, $A_n = \{n, n+1, n+2, \dots\}$ and

$$\begin{aligned} \tau &= \{\emptyset\} \cup \{A_n \mid n \in \mathbb{N}\} \\ &= \{\emptyset\} \cup \{A_0, A_1, A_2, \dots\}. \end{aligned}$$

- (1) Show that τ is a topology on \mathbb{N} .
- (2) Let $B = \{1, 3, 5, 7, \dots\}$. Find $\overset{\circ}{B}$ in (\mathbb{N}, τ) .
- (3) Find the closed sets in (\mathbb{N}, τ) .
- (4) Determine $\mathcal{N}(2)$ and $\mathcal{N}(3)$. Deduce that (\mathbb{N}, τ) is not Hausdorff.
- (5) Prove that (\mathbb{N}, τ) is compact.

Exercise 1. (1) We have

$$\begin{aligned}
 B(0, 1) &= \{x \in \mathbb{R} \mid d(x, 0) < 1\} = \{x \in \mathbb{R} \mid |e^x - \underbrace{e^0}_{=1}| < 1\} \\
 &= \{x \in]-\infty, 0[\mid 1 - e^x < 1\} \cup \{x \in [0, \infty[\mid e^x - 1 < 1\} \\
 &= \{x \in]-\infty, 0[\mid 0 < e^x\} \cup \{x \in [0, \infty[\mid x < \ln 2\} =]-\infty, 0[\cup [0, \ln 2[=]-\infty, \ln 2[.
 \end{aligned}$$

(2) A is bounded. We see that $A =]-\infty, 0] \subset]-\infty, \ln 2[= B(0, 1)$. Hence, A is bounded in (\mathbb{R}, d) .

A is closed. Let $(x_n)_{n \in \mathbb{N}} \subset A$ be a sequence that converges in (\mathbb{R}, d) to some limit $l \in \mathbb{R}$, that is $\lim_{n \rightarrow \infty} d(x_n, l) = \lim_{n \rightarrow \infty} |e^{x_n} - e^l| = 0$. This gives $\lim_{n \rightarrow \infty} e^{x_n} = e^l$ or $\lim_{n \rightarrow \infty} x_n = l$. Since $x_n \leq 0$ for all $n \in \mathbb{N}$, it follows that $l = \lim_{n \rightarrow \infty} x_n \leq 0$. Hence $l \in A$, and so A is closed in (\mathbb{R}, d) .

(3) The sequence $x_n = -n$ is Cauchy in (\mathbb{R}, d) because $\lim_{p, q \rightarrow \infty} d(x_p, x_q) = \lim_{p, q \rightarrow \infty} |e^{-p} - e^{-q}| = 0$. By absurd, suppose that $(-n)_{n \in \mathbb{N}}$ converges in (\mathbb{R}, d) to some limit l . Namely, $\lim_{n \rightarrow \infty} d(-n, l) = \lim_{n \rightarrow \infty} |e^{-n} - e^l| = 0$. This gives $\underbrace{\lim_{n \rightarrow \infty} e^{-n}}_{=0} = e^l > 0$, which is absurd. Hence, the sequence $(-n)_{n \in \mathbb{N}}$ is divergent in (\mathbb{R}, d) , and so (\mathbb{R}, d) is not complete.

(4) We see that $x_n = -n \in A$ for all $n \in \mathbb{N}$. By absurd, suppose that $(-n)_{n \in \mathbb{N}}$ has a subsequence $(-\varphi(n))_{n \in \mathbb{N}}$, where $\varphi : \mathbb{N} \rightarrow \mathbb{N}$ is a strictly increasing map, converging to some limit l . This leads to $\underbrace{\lim_{n \rightarrow \infty} e^{-\varphi(n)}}_{=0} = e^l > 0$, which is impossible. Hence, any subsequence of $(-n)_{n \in \mathbb{N}}$ is divergent, and so A is not compact in (\mathbb{R}, d) .

Exercise 2.

- (1) (i) $\delta(x, y) = 0 \Leftrightarrow \ln(1 + |x - y|) = 0 \Leftrightarrow 1 + |x - y| = 1 \Leftrightarrow |x - y| = 0 \Leftrightarrow x = y$.
- (ii) $\forall x, y \in \mathbb{R} : \delta(x, y) = \ln(1 + |x - y|) = \ln(1 + |y - x|) = \delta(y, x)$, then δ is symmetry.
- (iii) Triangle inequality. Let $x, y, z \in \mathbb{R}$. We have

$$\begin{aligned}
 \delta(x, y) \leq \delta(x, z) + \delta(z, y) &\Leftrightarrow \ln(1 + |x - y|) \leq \ln(1 + |x - z|) + \ln(1 + |z - y|) \\
 &\Leftrightarrow e^{\ln(1 + |x - y|)} \leq e^{\ln(1 + |x - z|) + \ln(1 + |z - y|)} \\
 &\Leftrightarrow e^{\ln(1 + |x - y|)} \leq e^{\ln(1 + |x - z|)} e^{\ln(1 + |z - y|)} \\
 &\Leftrightarrow 1 + |x - y| \leq (1 + |x - z|)(1 + |z - y|) \\
 &\Leftrightarrow \underbrace{|x - y| \leq |x - z| + |z - y| + |x - z||z - y|}_{\text{it is true}}.
 \end{aligned}$$

Hence, the triangle inequality holds. From (i), (ii) and (iii), δ is a distance on \mathbb{R} .

(2) φ is linear. For all $f, g \in E$ and $\lambda \in \mathbb{K}$, we have

$$\begin{aligned}
 \varphi(\lambda f + g) &= \int_a^b (\lambda f + g)(x) dx - (\lambda f + g)\left(\frac{a+b}{2}\right) \\
 &= \int_a^b (\lambda f)(x) + g(x) dx - (\lambda f)\left(\frac{a+b}{2}\right) - g\left(\frac{a+b}{2}\right) \\
 &= \int_a^b \lambda f(x) dx + \int_a^b g(x) dx - \lambda f\left(\frac{a+b}{2}\right) - g\left(\frac{a+b}{2}\right) \\
 &= \lambda \int_a^b f(x) dx + \int_a^b g(x) dx - \lambda f\left(\frac{a+b}{2}\right) - g\left(\frac{a+b}{2}\right) \\
 &= \lambda \left[\int_a^b f(x) dx - f\left(\frac{a+b}{2}\right) \right] + \int_a^b g(x) dx - g\left(\frac{a+b}{2}\right) \\
 &= \lambda \varphi(f) + \varphi(g).
 \end{aligned}$$

So, φ is linear.

Continuity of φ . One can write

Since φ is linear, it follows from $(*)$ that φ is continuous on E .

Exercice 3.

(1) (i) $\emptyset \in \tau$ and $\mathbb{N} = A_0 \in \tau$.

(ii) Let $B_1, B_2 \in \tau$. We distinguish two cases :

- $B_1 = \emptyset$ or $B_2 = \emptyset$, then $B_1 \cap B_2 = \emptyset \in \tau$.
- $B_1 \neq \emptyset$ and $B_2 \neq \emptyset$, then $B_1 = A_{n_1}$ and $B_2 = A_{n_2}$ with $n_1, n_2 \in \mathbb{N}$. Setting $n_3 = \max(n_1, n_2)$, we get $B_1 \cap B_2 = A_{n_3} \in \tau$.

(iii) Let $(B_i)_{i \in I} \subset \tau$. We distinguish two cases :

- * $\forall i \in I : B_i = \emptyset$, then $\bigcup_{i \in I} B_i = \emptyset \in \tau$.
- * There exists $i \in I$ such that $B_i \neq \emptyset$. Therefore, $B_i = A_{n_i}$ for some $n_i \in \mathbb{N}$. Setting $m = \min\{n_i | B_i = A_{n_i}, i \in I, n_i \in \mathbb{N}\}$, we find $\bigcup_{i \in I} B_i = A_m \in \tau$.

From (i), (ii) and (iii), τ is a topology on \mathbb{N} .

(2) If $m \in B = \{1, 2, 3, 7, \dots\}$, then $m \notin \mathring{B}$ because there do not exist $n \in \mathbb{N}$ such that $m \in \underbrace{A_n}_{\in \tau} \subset B$. Hence, $\mathring{B} = \emptyset$.

(3) B is closed $\Rightarrow \complement_{\mathbb{N}} B \in \tau \Rightarrow \complement_{\mathbb{N}} B = \emptyset$ or $\complement_{\mathbb{N}} B = A_n, n \in \mathbb{N} \Rightarrow B = \mathbb{N}$ or $B = \emptyset$ or $B = \{0, 1, \dots, n\}, n \in \mathbb{N}$. If $B = \{0, 1, \dots, n\}$ for some $n \in \mathbb{N} \Rightarrow \complement_{\mathbb{N}} B = A_{n+1} \in \tau \Rightarrow B$ is closed. Hence, the closed sets in (\mathbb{N}, τ) are \emptyset, \mathbb{N} and any set of the form $\{0, 1, \dots, n\}$, where $n \in \mathbb{N}$.

(4) We have $V \in \mathcal{N}(2) \Leftrightarrow \exists n \in \mathbb{N} : 2 \in \underbrace{A_n}_{\in \tau} \subset V$. Hence, $\mathcal{N}(2) = \{A_0 = \mathbb{N}, A_1 = \{1, 2, \dots\}, A_2 = \{2, 3, \dots\}\}$. In the same way, $\mathcal{N}(3) = \{A_0 = \mathbb{N}, A_1 = \{1, 2, \dots\}, A_2 = \{2, 3, \dots\}, A_3 = \{3, 4, \dots\}\}$. We see that $V \cap W \neq \emptyset$ for all $V \in \mathcal{N}(2)$ and $W \in \mathcal{N}(3)$, then (\mathbb{N}, τ) is not Hausdorff.

(5) Let $(\Omega_i)_{i \in I}$ be an open cover of \mathbb{N} , that is $\mathbb{N} \subset \bigcup_{i \in I} \Omega_i$. Since $0 \in \mathbb{N}$ and $A_0 = \mathbb{N}$ is the unique open set of τ containing 0, there exists $i_0 \in I$ such that $\Omega_{i_0} = \mathbb{N}$. Thus, $(\Omega_i)_{i \in I}$ has a finite subcover, and (\mathbb{N}, τ) is compact.

★★★★★ Prof. Dr. Elmehdi Zaouche ★★★★★