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1. Prove that              

We prove by induction. It’s clear that         ……(01p)  
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2. Show that (  ) is strictly increasing, what do you conclude? 
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Then (  ) is strictly increasing. 

Since (  ) is strictly increasing and bounded above by 1, therefore, it is convergent and its limit is   such that 
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It’s clear that   is continuous on   , we have 
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Then    is continuous at 0. 

 
Therefore    is continuous on  …….(0.5p) 

 
Finally, we conclude that     ( ). 

 

2. Let  ( )         , calculate (   ) ( ). 

We know that 
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1. Determine the limits of   and study the direction of change of  . 
We have 
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We have   is differentiable on ]    [ and 
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Therefore   is strictly decreasing……(0.5p) 

 

2. Prove that  ( )   

 
 has a unique solution on ]    [ and trace the graph of  . 

We have 
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The function   is continuous and strictly decreasing on ]    [. So, by using the intermediate value theorem, we 
find that the equation  ( )     ( )   

 
 has a unique solution on ]    [……(01.5p) 

 

The graph of  …….(01.5p) 
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